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ABSTRACT 
 
Lumped parameter heat transfer methodology is simple, and the solution is very fast, so the lumped 
parameter approach has been widely used in the thermal-hydraulic analysis for the fuel pin heat transfer in 
the nuclear reactors. In the conventional lumped parameter thermal analysis of the fuel pin structure, each 
component (such as pellet, cladding etc.) is characterized by a concentrated bulk temperature (or averaged 
temperature), and a bulk thermal resistance. In contrast to this conventional lumped thermal resistance 
model, in this paper another kind of lumped thermal resistance heat transfer model for fuel pin structure 
has been developed. In this model, each fuel pin component is still represented by a concentrated lumped 
mean temperature, while the location of the mean temperature position of each component is no longer set 
on the geometrical middle point, rather exactly assigned on the analytical temperature profile. Two 
thermal resistance elements are assigned for each component in this new model: between each component 
outer surface and lumped mean temperature node a thermal resistance is assigned, respectively, each 
lumped thermal resistance connects the mean temperature node with the corresponding outer surface. The 
heat conduction between mean temperature nodes of different components is properly defined to takes 
place at the in-between surfaces. Within this new model, the location of the mean temperature positions 
for each component can be determined analytically, and all the thermal resistances are re-defined, 
accordingly. The advantage of the presented method is that the temperature profile in the fuel structure at 
any radial position can be re-produced after a quite easily lumped heat transfer calculation. This 
methodology can be used in nuclear reactor simulation studies where fastness of the solution is a matter 
of concern, meanwhile the exact temperature profile in the fuel pin structure can be re-produced at the 
same time. 
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1. INTRODUCTION 
 
Solving the thermal problems with the exact analytical method or numerical analysis sometimes is 
cumbersome or expensive in terms of the computing time. Under some conditions, an alternative 
approach, based on the lumped parameter method, becomes attractive and feasible.  Especially for 
nuclear reactor analysis, the lumped parameter method is very useful because the set of governing partial 
differential equations is reduced to a few algebraic equations that can be easily solved with less effort.  
This method becomes more attractive, if the physical model of the system is very complicated. Thus 
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lumped parameter heat transfer models have been widely used in the thermo-hydraulic analysis of nuclear 
reactors. 
 
In some nuclear reactor analysis applications, our interesting focus on the “steady” temperature 
distribution within fuel pin structure under the assumption that pasting the initial transient phase the 
temperature distribution reaches its time asymptotic solution, in this circumstance the lumped parameter, 
combined with circuit analogy method, is of great advantage because of its simplicity. The thermal 
resistance concept permits some relatively complex heat-transfer problems to be solved in a very simple 
manner. 
 
The conventional lumped parameter thermal analysis applies only to heat transfer problems without 
internal energy generation. [1, 2], because of the assumption that the heat fluxes keep constant in the 
analyzed components. As an approximation, the distributed heat generation source in one component can 
also be concentrated on its geometrical central position. Meanwhile this point services also for the 
location of the mean temperature positon within the component. This method is widely applied in 
equivalent thermal network analysis for electrical machines. [3, 4]. 
 
On the contrary, in this paper another kind of lumped-parameter thermal resistance is developed for fuel 
pin structure with central hole or without central hole, under the assumption of a uniform volumetric 
internal heat source. This thermal resistance concept can exactly reflect the influence of the internal heat 
source without any approximation. 
 
The goal of this paper is to find a general and suitable lumped parameter thermal resistance model for a 
fuel pin structure. The treatment has been generalized by considering the heat transfers between the 
surfaces of the considered component and the mean temperature location, see Fig. 1. This lumped 
parameter thermal resistance concept is very general, and it can also be deployed to the commonly used 
thermal network approach for other engineering applications, such as the analysis of electric machines, 
etc. [5]. 
 
2. BASIC EQUATIONS AND MATHEMATICAL MODELS 
 
2.1 Temperature Profile and Heat Transfer Rate 
 
Consider a hollow cylindrical pellet of inner and outer radii Ri and Ro, respectively, with a uniform 
nuclear heat generation rate  per unit volume. The length of the hollow cylindrical pellet is assumed 
infinitely and material thermal properties are axially homogenous, see Fig. 1. 
 
The 2D cylindrical coordinate system is employed in the following analysis. The thermal conductivity, k, 
fuel mass density, ρ, and the specific heat capacity, c, the nuclear heat generation rate, ,  per unit 
volume are assumed constant. 
 
It is well known that one dimensional steady state heat conduction, through a cylindrical wall with 
internal heat generation in the radial direction, is governed by the cylindrical form of Poisson’s equation 
[6], that is  
 

       (1) 
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Fig. 1 (a) A Hollow Cylindrical Pellet with a Uniform Nuclear Heat Generation Rate and (b) The 

Thermal Resistances Network Model. 
 
For the sake of a generality, the inner surface of the hollow cylinder is subjected to a heat transfer rate 
into the cylinder per unit axial length, Qi, while the cylinder outer surface temperature is given as . 
Then the hollow cylinder is subjected to the following thermal boundary conditions, 
 

      (2) 
 

       (3) 
 
Integrated twice, the solution to Eq.1, taking into account the boundary conditions of (2) and (3), is of the 
form 
 

.   (4) 
 
The temperature distribution can also be expressed by the inner surface temperature of the hollow 
cylindrical pellet, , provided it is known, that is  
 

.   (5) 
 
From equation (4) or (5) it is of importance to recognize that, for one-dimensional, steady state heat 
conduction in a hollow cylindrical pellet, with an uniform volumetric internal nuclear heat generation rate 
of , a constant thermal conductivity of k and a constant heat transfer rate per unit axial length at the 
inner surface of the hollow cylindrical pellet, Qi, the temperature profile within the cylindrical pellet can 
be determined if and only if the temperature at any cylindrical surface is known. 
 
 
The above solution is developed for a prescribed heat transfer rate per unit axial length at the inner 
surface of the hollow cylinder as shown in Eq. (2). For an adiabatic boundary condition, we can just set 
the heat transfer rate at the prescribed surface to equal to zero. 
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The above solution is also a general result for a hollow cylinder with an inner radius of Ri. For a solid 
cylinder, the inner radius can be simply set to zero, saying Ri=0 for Eq. (4). Under this condition, the heat 
transfer rate per unit axial length at the inner surface of the hollow cylinder becomes also to zero for the 
reason of symmetry. 
 
Now we have the temperature profile, if we consider the appropriate form of Fourier’s law, under steady 
condition, the rate at which heat is conducted across any cylindrical surface per unit axial length may be 
expressed as  
 

.     (6) 
 
2.2 Mean Temperature 
 
General the mean temperature should be calculated by 
 

.     (7) 
 
If the density and heat capacity are constant, the mean temperature of the above hollow cylinder can be 
calculated using 
 

.       (8) 
 
Hence the mean temperature of the hollow cylinder can be evaluated to give 
 

.  (9) 
 
As an alternative, the mean temperature can be expressed by the inner surface temperature, ,  of the 
hollow cylinder as well,  that is 
 

.  (10) 
 
From the results of equations of (9) and (10) it can be known, that the mean temperature of a hollow 
cylinder can be expressed by its inner or outer surface temperature, if the inner and outer radii of the 
hollow cylinder are predetermined. 
 
As augmented for the temperature profile, the expression for mean temperature can be also applied to an 
adiabatic boundary condition at inner surface, and also for solid cylinder as well, if the heat transfer rate 
at inner surface equals to zero, or the inner radius is set to zero, respectively. 
 
2.3 Mean Temperature Location 
 
The location of the mean temperature position of the hollow cylinder, , can be determined by a 
comparison of temperatures of , that is given by comparison of equations (4) and (9), or 
comparison of (5) and (10), 
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. (11) 
 
The location of the mean temperature position ( ) of the hollow cylinder is situated at the radius of (11).  
It can be proven that if  and  are greater than zero, there is only one solution. It should be iteratively 
calculated, such as with Newton’s iteration method.  
 
Unlike the argumentation for temperature distribution and mean temperature expression, eq. (11) cannot 
be applied to determine the location of the mean temperature position for solid cylinder, namely if the 
inner radius is vanished. In this case, the location of the mean temperature position can be analytically 
solved, that is 
 

.      (12) 
 
From equation (11) and (12) it is evident that the location of the mean temperature position of the hollow 
cylinder or solid cylinder is a pure geometrical parameter, provided the heat flux at inner surface and 
volumetric heat generation rate are known for hollow cylinder. It is independent on material thermal 
properties. It is of advantage for the computer code since it isn’t needed to dynamically calculate the 
nodal position of the mean temperature for quasi-steady calculation. 
 
2.4  Re-Production of The Temperature Profile 

 
As mentioned above, the temperature profile in the hollow cylinder can be determined if and only if the 
temperature at any cylindrical surface within the component is known. It is of great advantage if the mean 
temperature and the mean temperature position are known. With this argumentation we can re-produce 
the temperature distribution inside the cylinder. Referring to equation (4) or (5), the temperature profile is 
given 
 

   (13) 
 
For solid cylinder, the temperature profile can also be re-produced by Eq. (13), if the inner radius, Ri, is 
set to zero and the location of the mean temperature position is determined by Eq. (12). As long as Qi is 
set to zero, the result corresponds to a thermal adiabatic boundary condition at the inner surface. 
 
2.5  Heat Transfer Coefficient and Thermal Resistances 

 
In the lumped parameter thermal circuit method, the thermal-physical properties, temperatures etc. of 
each component or node are considered to be concentrated at a nodal point within this component. In 
contrast to the convenient concentrated method [7], in this new model the thermal resistance for each 
component is concentrated into two parts as shown in Fig.1 (b): between inner surface of hollow cylinder 
and mean temperature location a thermal resistance element is assigned, while between mean temperature 
location and outer surface of the hollow cylinder another thermal resistance is prescribed. 
 
Concerning to Fig.1 (b), at first, we consider the heat transfer rate between inner surface and mean 
temperature node, the representative temperatures are  and , which are suited at radii of Ri and , 
respectively. 
 
Remembering that the thermal resistance is defined as the temperature difference between two nodes 
divided by the heat transfer rate in-betweens, we obtain 
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      (14) 
 
In this model the heat transfer rate is assigned to sit at radius of . Next we consider the thermal 
resistance between mean temperature node and outer surface, accordingly, the representative temperatures 
are  and  respectively, it gives 
 

      (15) 
 
Here the heat transfer rate for this thermal resistance is assigned to sit at radius of .  
 
3. LUMPED THERMAL RESISTANCE MODEL FOR FUEL PIN STRUCTURE 
 
The same physical description and thermal resistance concept are applied for fuel pin heat transfer model 
by using an equivalent thermal network of lumped parameter method.   
 
For the sake of simplify the thermal radiations and convective heat transfers in gap are neglected. A 
steady state is already established, saying at time=0. In the following all the expressions are assumed at 
time=0 and a unit axial length is considered. We calculate the respective thermal resistance in the 
following.  
 
3.1 Fuel Pin Pellet 
 
Referring to Fig.2, the fuel pellet forms a hollow cylinder with internal heat generation. It is assumed the 
inner and outer radii of fuel pellet equal to Rpi and Rpo respectively. A uniform internal heat generation 
rate per unit volume inside fuel pellet, , is considered, thus the linear power in the fuel pellet is 

. Furthermore, at inner surface of pellet of  it is thermal insulated, a 
constant temperature, Tpo, at the outer surface of pellet at  is applied. The pellet mean 
temperature is assigned to , which locates at radius of . With this postulation and Eqs. (9) and (10), 
the fuel pellet mean temperature is given 
 

            (14) 

 
Or 
 

      (15) 

 
Where 
 

     (16) 

 
and 
 

     (17) 
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Two lumped thermal resistances Rpi,f and Rf,po,  are introduced to account for the heat transfer between 
Tpi and , and between  and Tpo, respectively. 
 

 
Fig. 2.  (a) Fuel Pin Structure Heat Transfer Model and (b) Corresponding Lumped Parameter 

Thermal Network. 
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Fig. 2 shows the one dimensional fuel pin structure heat transfer model and its corresponding lumped 
parameter thermal circuits. 
 
We concentrate now on the energy balance for pin pellet. The heat transfer rate per unit length from inner 
hole to pellet is assumed to zero,  at , while the one is denoted as 

 at  from pin pellet to gap. Accordingly, the corresponding heat transfer areas per 
unit length are  and , respectively. With these postulations, the thermal 
resistances, Rpi,f and Rf,po  are given as follows: 
 

      (18) 

 

   (19) 

 
3.2 Gap Between Pellet and Cladding 
 
Between pellet and cladding forms a hollow cylinder with inner and outer radii of Rpo and Rci 
respectively, as shown in Fig.2. It is assumed that the gap is filled with fission gas (or noble gas) and with 
a constant thermal conductivity of kg , furthermore no heat is generated in gap. Under this assumption, the 
linear heat conduction rate inside gap keeps constant in the radial direction, namely . 
 
Under this circumstance, one dimensional steady state heat conduction is governed by the cylindrical 
form of Laplace’s equation [7] in the radial direction and the temperature profile is 
 

,     (20) 

or 

.     (21) 
 
Though the gap is small compared with pellet size, but the gas thermal conductivity diminishes rapidly 
with burnup because of the fission product gases Xe & Kr are considerably less than that of the fission 
gas (normally helium), [8, 9]. In this case two lumped thermal resistances, Rpo,g, and Rg,ci, should be 
introduced to account for the heat transfer between pellet outer surface and gap, and between gap and 
cladding inner surface. With some mathematical manipulation, that is easy to show 

,  (22) 
 

.   (23) 

 
Accordingly, the gap mean temperature and its location are given 
 

,     (24) 

 

.     (25) 
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3.3 Cladding 
 
The cladding inner and outer radii equal to Rci and Rco respectively. A uniform volumetric heat generation 
rate inside cladding, , is assumed, thus the linear heat power inside cladding is 

. At the inner surface of cladding of r= Rci the linear heat conduction rate equals to 
, a boundary condition of constant temperature, Tco, on the outer surface of cladding at r= 

Rco is assumed. A constant thermal conductivity of cladding, kc, is applied. The cladding mean 
temperature is assigned as , which locates at radius of , as shown in Fig. 2. With these postulations 
and Eqs. (8) and (9), the cladding mean temperature is given 
 

,   (26) 
 
Or 
 

.   (27) 
 
Where 
 

;      (28) 
 

.      (29) 
 
For cladding two lumped thermal resistances, Rci,c and Rc,co,  are introduced to account for the heat 
transfer between Tci and , and between  and Tco, respectively, referring to the relations of  

 and , the thermal resistances are given 
 

,  (30) 
 

. (31) 
 
 
3.4 Cladding-Fluid Thermal Resistance 
 
The cladding outer surface is cooled by the surrounding fluid, with an average temperature of . It is 
assumed that the convective heat transfer coefficient between fluid and cladding outer surface is hL, at 
steady state, the heat generated in the fuel pellet and cladding are transferred to the coolant. The heat 
transfer in-between is defined by the expression of Newton’s law of cooling for unit axial length:  
 

.    (32) 
 
Where the heat transfer area per unit length is assigned at , accordingly, the thermal resistance is 
 

.      (33) 
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4. LUMPED THERMAL RESISTANCE HEAT TRANSFER EQUATIONS 
 
Suppose the fuel pin is axially divided into “N” nodes, at a given axial pin node . It is assumed that only 
per unit axial length of mass of different materials are considered, based on the energy balance for 
individual component, lumped heat transfer equations for fuel pellet, gap and cladding are, 
 

,     (34) 

 
,    (35) 

 
.    (36) 

 
where ,   and  are the thermal capacities per unit axial length for fuel pellet, 
gap and cladding, respectively. 
 
For a given axial node the primary coolant energy conservative equation can be written, analog to the 
[10], 
 

.   (37) 
 
Where  is tha average coolant temperature at the given axial node,  is coolant inlet temperature 
into the given axial node.  represents the coolant mass flow rate per unit length.  are the 
coolant mass per unit axial length and heat capacity, respectively. 
 
Proved an initial equilibrium steady state is established at t=0, Eqs. (34) to (36) form a quasi-static 
lumped thermal resistance transient heat transfer model for fuel pin structure without any other 
approximations.  
 
If the surrounding fluid average temperature, , and the correlation of the Newton’s law of cooling, 
namely the thermal resistance , are previously given, Eqs. (34) to (36) form a system of four linear 
algebraic equations with four unknowns, , , , and  with the initial conditions of 

,   and . When ,  and  are solved, with the help of Eqs. (10), 
(11) and (12) the temperature profiles inside pin structure can be given. 
 
5. VERIFICATION AND VALIDATION 

 
5.1 Steady State Results 

 
Proved at t=0 a thermal equilibrium state is established, let the left hand side of the Eqs. (34) to (36) equal 
to zero, we have the steady state results, which form a system of three linear algebraic equations with 
three unknowns, , and , 

 
,      (38) 

 
,   (39) 
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   (40) 
 

Where ; , and . 
 
The typical pin structure geometry of the advanced sodium technological reactor for industrial 
demonstration (ASTRID like) [11] developed in Europe is selected to illustrate the application of this 
model. The main pin structure geometry and thermal properties are listed in table I. Steady state heat 
transfer between sodium and cladding with the following coolant Newton’s law of cooling [12]: 
 

.      (41) 
 
The average coolant Reynolds number is calculated to be 6.7127x104 and Prandt number is selected as 
4.30x10-3, [13]. The gap is filled with helium [8] and the thermal properties used the values from [13]. 
 

Table I. Pin structure geometry and thermal properties  
 

Description Values Description Values 
Inner hole diameter at 20°C 
(mm) 2.2 Outer pellet diameter at 20°C 

(mm) 8.45 

Cladding inner diameter at 20°C 
(mm) 8.7 Cladding outer diameter at 20°C 

(mm) 9.7 

Pellet linear power (W/m) 3.6086×104 Volumetric Power of pellet 
(W/m3) 6.9027×108 

Cladding linear power (w/m) 9.0215×101 Volumetric Power of cladding 
(W/m3) 6.2427×106 

Sodium heat transfer coefficient 
(W/m2∙K)  4.3883×104 Sodium average temperature (°C) 500 

Pellet thermal conductivity 
(W/m∙k) 2.31 Gap thermal conductivity 

(W/m∙k) 0.3762 

Cladding thermal conductivity 
(W/m∙k) 17.1 Sodium thermal conductivity 

(W/m∙k) 69 

Pellet density (kg/m3) 10641 Pellet thermal capacity (J/kg∙k) 334 

Cladding density (kg/m3) 7864 Cladding thermal capacity 
(J/kg∙k) 529 

Gap (helium) density (kg/m3) 0.04486 Gap thermal capacity(J/kg∙k) 5193 
Sodium density (kg/m3) 832 Sodium thermal capacity (J/kg∙k) 529 
Sodium mass flow rate (kg/s) 0.2863   
 
 

Table II. Different thermal resistance  
 

Description Thermal resistance Symbol Values 

Pellet 
Inner surface to mean temperature location   
Mean temperature location to outer surface  1.5210×10-2 

Gap Pin outer surface to mean temperature  6.2274×10-3 
Mean temperature to cladding inner surface  6.1075×10-3 

Cladding Cladding inner surface to mean temperature  5.2510×10-4 
Mean temperature to cladding outer surface  4.8756×10-4 

Sodium Cladding outer surface to coolant  7.4779×10-4 
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Table II gives the calculated different thermal resistance for this pin structure geometry and the calculated 
mean temperature location and the mean temperature are given in table III and illustrated in Fig. 3. 
 

Table III. Calculated steady state results  

 
 
5.2 Comparison With Analytical Solution and Re-Production of The Temperature Profile 
 
As mentioned above, the temperature at any cylindrical surface in the hollow cylinder can be determined 
if and only if the temperature at one cylindrical surface within the corresponding element is known. We 
use here the calculation results of the table 3 to re-produce the temperature profile for the pin structure. 
Referring to equation (13), the temperature profile is calculated and shown in Fig. 3, in which the 
analytical temperature distribution and the calculated location of the mean temperature positions of the 
pellet, , gap,  , and the cladding, , and their values are also given. It can be seen that the mean 
temperatures of each part are exactly suited on the analytical temperature profile. 
 

 
Fig. 3 Analytical Temperature Profile and Average Temperatures for Pellet, Gap, and Cladding. 
 
 

Description °C Mean temperature location radius (mm) 
Pellet mean temperature,  1557.62 3.1265 
Gap mean temperature,  784.036 4.2876 
Cladding mean temperature,  544.69 4.6023 
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6. CONCLUSION 
 
A generalized lumped parameter thermal resistance method has been developed for pin structure with 
uniform volumetric internal heat generation. The treatment has been performed by considering the law of 
energy conservation between lumped mean temperature node and element surfaces. For the definition of 
the thermal resistance, the heat conduction between lumped mean temperature node of one component 
and neighborhoods take place on the corresponding element surfaces, at which the heat transfer areas are 
defined. Between each element surface and lumped mean temperature node a thermal resistance is 
assigned, the thermal resistance connects the mean temperature node with the corresponding surface. The 
mean temperature is purposely and exactly set up on the analytical temperature profile; with this 
arrangement all the thermal resistances and the location of the mean temperature position can be 
determined analytically. The advantage of the presented method is that the temperature distributions 
across whole pin structure can be re-produced after a quite easily lumped heat transfer calculation as 
illustrated in the section 5.2. 
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