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Abstract

This paper introduces the Dynamical System Scaling (DSS) methodology. The DSS method
presented herein provides an approach that can be used to optimize process scaling and to assess
process scale distortions over the entire duration of a process. This paper introduces the concept
of temporal displacement rate and presents the derivation of a process 1-metric that relates
reference time to process time. The DSS method describes physical processes as trajectories in a
normalized coordinate system typical of that found in the study of dynamical systems. Process
similarity, as with geometric similarity, is attributed to an invariance of the process metric under a
coordinate transformation. It is shown that a two-parameter affine transformation of the
normalized coordinates yields five distinct scaling approaches; including the well-known power-
to-volume scaling approach. It is shown how prototype and scaled model processes can be
compared and how their relative time-dependent distortions can be quantified using a flat-space
approximation in normalized coordinates. The paper concludes with positing research for
advanced scaling analytics based on the invariance of a process metric for a 2-dimensional
Riemannian space in normalized coordinates.
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1. INTRODUCTION

The Hierarchical Two-Tiered Scaling (H2TS) methodology and more recently the Fractional
Scaling Analysis (FSA) methodology are well established techniques that have been adopted in
many studies [1] -[7]. To assess time-dependent scaling effects, recent studies [8]-[9] have
extended these methods to include dimensionless groups based on the initial conditions, average
conditions, or final conditions. A method for assessing time dependent scaling distortions
evaluated as the transient evolves is discussed in [10]. The Dynamical System Scaling (DSS)
approach presented in this paper is a powerful new methodology that builds from the H2TS and
FSA approaches by incorporating the system’s dynamic response into the scaling framework. The
purpose of this paper is to introduce the underlying theory for the DSS approach as applied to a
single dynamical process. Future papers will describe the application of the DSS approach to
hierarchical systems.
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2. THEORY

The first step in the DSS approach is to describe physical processes in terms of points and arc
lengths in a special coordinate system; also known as a phase space in the study of dynamical
systems [11]. The idea of describing physical processes in terms of geometric objects is not new.
Klein’s (1893) Erlangen program proposed that physical processes can be described in terms of
the invariant properties of geometric objects [12]. By describing processes in terms of geometry,
this paper proposes that the principles of geometric similarity can be used to assess process
similarity. In the DSS approach, process similarity, as with geometric similarity, can simply be
viewed as invariance under a coordinate transformation. This section introduces the underlying
mathematics and methods needed to a) relate an externally measured reference time scale (i.e.,
clock) to the “natural” often non-linear time scale of a process, and b) describe the evolution of a
process as a trajectory on a surface defined in terms of process coordinates and parameterized by
process time.

2.1 Definitions and Fundamental Concepts

A system is defined as a finite control volume containing a conserved quantity such as mass,
momentum, or energy and acted upon by internal and external agents of change. A process is
defined as the sequential transition of the state of the system; the transition sequence governed by
an integral system balance law constrained by the system’s initial state and boundary conditions.

Reference time is as defined by Einstein and Infeld [13] which recognizes a clock as a special type
of process; one capable of producing constant time intervals. A reference time coordinate is
constructed by adding the constant time intervals produced by such a process. The time scale
produced by a reference clock is defined as the t-coordinate in this paper. Reference clocks have
no physical relationship to the process being measured. They can only provide a natural
parameterization for physical processes evolving with constant time intervals. Reference time shall
later be shown to be a subset of process time.

2.1.1 Integral Balance Equation

Consider an arbitrary control volume containing a conserved quantity such as a specific mass,
momentum, or energy that is a function of position X within the control volume and that varies
relative to an external reference time measurement, t. It is assumed that the spatial and temporal
coordinates are continuous. It is further assumed that the control volume is bounded by a control
surface that is deformable, has a local instantaneous surface velocity V,, and has an outward normal

vector N . Let the local and instantaneous amount of a conserved quantity distributed within the
system be denoted by (X,t) . This quantity can change by material transport (//(\7 —V, ) - into

or out of the control volume (e.g., fluid enthalpy transport) or it can change as a result of a flux
(T-ﬁ ) applied at the surface (e.g., surface heat transfer). It can also change as a result of
volumetric sources or sinks ¢, that produce or deplete the conserved quantity. Finally, the amount
of conserved quantity can change as the result of the action of external fields ¢, , such as

gravitational, magnetic, or electric fields. Taking into account all of these agents of change, ¢,

including multiple fluxes and material transports (summed from i=1 to n), the integral balance
equation for the system is written as:
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The following definitions are now introduced to aid in later sections. First, the normalized
integral amount of conserved quantity at a given instant is defined as follows:

ﬂ(t)z\PLOJ.\J/‘.[ v (X1)dV. o

In this equation, ¥, is a time-independent (ideally maximum) value of the integrated conserved
quantity for the process considered. Furthermore, ¥, can also be expressed as a maximum interval

relative to a reference datum. Next, the parameter a)(t) shall be defined as:

a)(t)=q]io J.\J/.J.(¢V+¢f)dv+[g (?-ﬁ)dA—[];[ w(V-V,)-ndA :\PLE”:% 3)

o i=l

This parameter has units of inverse time and is proportional to the sum of the agents of change.
Substituting Eqs.(2) and (3) into Eq. (1) yields the integral balance equation in terms of temporal
units as follows:

dg
o )
2.1.2 Process Time as a Natural Parameter
The process time is defined as follows:
P
T= o . (5)

Equation (5) is the process time defined by Zuber in 2001 [14]. He defines the process time as the
inverse of the fractional rate of change of a conserved quantity. The results obtained in his study
are quite insightful and have found excellent use in phenomenon scaling. Other researchers have
considered similar definitions [15]- [18]. Because the sum of the agents of change can be positive
or negative, the process timeline can run in either the positive or negative direction.

2.13 The Process Time Transformation Law
Taking the derivative of the process time Eq. (5), with respect to the reference time, t, gives the
following result:

dr 1dg g do
dt o dt o dt (6)
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It is immediately recognized that the first term on the right side of Eq. (6) is unity by virtue of Eq.
(4). Thus, Eq. (6) becomes:

dr _q p do

dt o dt ™
A useful insight into the process time transformation law can be obtained by defining a temporal
displacement rate, D, as follows:
dr—dt

dt (®)

This is analogous to the elongation rate of a material undergoing deformation (see for example
Dym and Shames) [19]. Substituting Eq. (8) into Eq. (7) reveals:

D:

p do

o dt’ ©)
Hence, the final form of the transformation law in differential form shall be expressed as:
dz=(1+D)dt. (10)

Equation (10) is a 1-metric that relates the infinitesimal process time interval to the infinitesimal
reference time interval. For D > 0, the process time interval is dilated relative to the reference time
interval. Conversely, for D <0, the process time interval is contracted relative to the reference time
interval. Accelerated processes are defined as those processes having a nonzero value of D.

The transformation law for the process time interval is obtained by integrating Eq.(10) as follows:

T, -1, =J2.(1+ D)dt (11)

4

n
For a constant rate process, the sum of the agents of change, z @, , 1s a constant. Subsequently D

is equal to zero because dw)/dt is equal to zero. Applying D =0 to Eq. (11) yields the result that

the process time interval and the reference time interval are equivalent (i.e., Az = At ). This result
agrees with Einstein’s definition of a clock being based on constant rate processes. Equation (11)
reveals that reference time is a subset of process time. Therefore a reference clock is any process
having a value of D equal to zero.

In summary, the definition proposed for process time, Eq.(5), unifies the concept of an externally
measured reference time scale and the time scale that arises from the change in the conserved
quantity within a system. Furthermore, Eq. (11) indicates that all process time scales are relative.
That is, every process creates a time scale that can be related to any reference time scale, and by
extension, to any other process time scale, by their process specific temporal displacement rates.
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2.2 Describing Processes in Phase Space (Process Space-time)

The instantaneous integral state of a system shall be defined as a pointona f—® coordinate
phase plane. The process evolves along a trajectory in phase space parameterized by lines of
constant7 . The 7 -coordinate lines are labelled as the null geodesics of the surface because
dz =0 along the 7 -coordinate line. Similarly, the process trajectory shall be labelled as the
process geodesic. These labels are strictly true only for the case of a phase space defined by
independent coordinates. This dynamical phase space can be viewed as a process space-time.
It is important to note that the state of a system is defined both in terms of the conserved quantity
and the agents of change.

The depiction of process curves onthe f—m plane is directly related to the concept of a phase
portrait for a dynamical system. This well-known technique provides powerful qualitative
insights into the stability, classification, and topological equivalence of system behaviors [11].
Plotting process curves in ff—w—7 space-time introduces the quantitative power afforded by
measuring the arc-length of a system state trajectory, or flow, using the process time scale, 7 .
Figure 1 depicts a process curve in f—w—17 space-time for the purpose of illustrating the
concepts.

o +o(s™) n

O

a)li ,,,,,,,,,, SYSTEM STATE POINT

ﬂnwl)

PROCESS CURVE

d,;() ﬂl

] —ols) v

Figure 1. Phase curve for a process depicted in the [ —® parameter plane with 7 as the

process time coordinate

The process trajectory is represented by the curve originating at the state point labeled 7, and

extending toz,. The null geodesics passing through the origin is the process time coordinate.

The arc length for any portion of the process curve can be determined in each of the four
quadrants. There is no requirement that the process space-time surface itself be everywhere flat.
That is, the surface can be curved and possess intrinsic geometric properties of value to the
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analysis. As such, a complete geometric analysis of a process requires a 2-metric equation for
measurements on curved surfaces which is the subject of future research.

3. Process Similarity Governed by Metric Invariance

The action or arclength of the process trajectory shown in Figure 1 shall be defined as follows:

7 :j(1+ D)dt. (12)

4

It is proposed that the action, 75, given by Eq (12) serve as the normalization factor for the

process 1-metric. This selection is based on requiring that the integral of the normalized 1-
metric equal unity as follows:

—=—[(1+D)dt=[dF =1 (13)

The normalized coordinates and parameters are then defined as:
~ ~ -t T
Q=wr,; =5 t=—; 7T=—
s B=F . . (14 a-d)

Equations (14 a-d) introduce an effect parameter, Q. It is recognized as Zuber’s effect metric
except that it has been normalized by the process action which is an integral over the entire
duration of the process. The descriptive term “parameter” is used to distinguish it from the
formal concept of a “metric” as defined in differential geometry.

Applying the normalized coordinates to Eq. (9) reveals that the normalized temporal
displacement rate is invariant under this coordinate transformation. That is, 7y cancels such
that:

£ dQ _ pdo

D= o a (15)

The normalized 1-metric for the process becomes:
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d#=(1+D)dt. (16)

4. Scaling Methods for a Single Dynamical Process

This section demonstrates how the invariance of the normalized 1-metric, Eq.(16), under
different types of coordinate transformations, when coupled to the principle of covariance yields
a variety of scaling methodologies.

4.1 Principle of Covariance

Consider a conserved process governed by Eq. (4) and measured using a reference clock with
a constant time interval dt, . Consider the same process measured in a scaled experiment using

a different reference clock with a constant time interval dt,, that is linearly proportional to
dt, . The principle of covariance asserts that the ratio (1/ a))d fS/dt is equal to unity in both

reference time frames. That is,

1 0A_1dp )

o, dt, o, dt,

4.2 Normalized Balance Equation

Expanding Eq.(4), the integral balance equations for the prototype (k=P) and the model (k=M)
can be written as follows:

df, _<
o Zw (18)

This equation can be made dimensionless by multiplying both sides of the equation by the
process action 7g to obtain:

dB,
ot

=Q, (19)

The effect parameter, Q, , is expressed as the sum of the products of the specific frequency

for an agent of change and the process action, 7, . That is,

Qk = z Oy Tg = Zﬁik (20)
i1 i1

Each of the effect parameters requires a separate equation that describes the local transport
phenomena that acts to add or remove conserved quantity to the system. Having defined the
governing equation, Eq.(19), for a full-scale prototype (k=P) and an equivalent model
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dynamical system (k=M), the following section will demonstrate how a two-parameter affine
transformation yields five potential scaling methods for a single dynamical process.

4.3 Transformation of Process Coordinates

Consider a two-parameter affine transformation (without translational components) of the S
and @ coordinates as follows:

ﬂM = ;tAﬂP (21)

Wy = A 0p (22)

In these equations, the transformation parameters A, and A;are constant scale factors. This

simple coordinate transformation leads to several important results, which will be demonstrated
in the next sections. This includes providing the scaling ratio for the reference time in the model
to that of the prototype and demonstrating that the temporal displacement rate of a process, D,
is invariant under affine transformations. This later result is important because the temporal
displacement rate embodies the acceleration of a process which is a central feature of scaling
dynamical processes. Furthermore, applying the two-parameter transformation to the
normalized process metric provides the scaling relationships for the effect parameters. Of major
significance is the fact that each combination of one- and two-parameter transformations results
in a unique scaling approach.

43.1 Reference Time Scaling and the Invariance of the Temporal Displacement Rate
The scaling relationship for reference time in the model relative to that in the prototype is
obtained by substituting the transformation parameters, Eq. (21) and Eq.(22), into the
covariance principle described by Eq.(17). This yields the simple scaling relationship:

A _diy
4, dt,

(23)

Similarly, substituting Eqgs.(21) and (22) into Eq. (9) results in the following expression relating
the model and prototype temporal displacement rates:

D,, __Pu doy, __&dﬁKQdiJ (24)

o) dt, @ dt, | 4, dt,

Substituting the definition of the prototype temporal displacement rate into Eq. (24) yields:

D,, = DP(’1A dt"] (25)

s dt,
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Finally, substituting the reference time scaling ratio, Eq.(23), into Eq. (25) yields the desired
demonstration that the temporal displacement rate is invariant with a two parameter affine
transformation of coordinates. That is,

D

-D (26)

M P

4.3.2 Invariance of the Normalized 1-Metric
The 1-metric for the model is defined using Eq. (16) as follows:

dz, =(1+D,, )df, 27)

Substituting Egs. (25) and (26) into Eq. (27), yields:

AgTom

d7, =dz, [ﬁ} (28)

For the 1-metric to be invariant under the specified coordinate transformation, the process
action scaling ratio must scale as follows:
T A
—M A (29)
T g
As such, the process action scales as the reference time. Applying this requirement to (28) yields
the 1-metric invariance:

d7, =d7, (30)
433 Effect Parameter Scaling Ratios
The integral balance equation for the model can be written as follows:
dg ~
Tsm d'[,\:ﬂ =Qy (31)
Similarly, the integral balance equation for the prototype is given by:
dﬂp ®
T =Q 32
SP dtp P ( )
Substituting Eq.(21), Eq.(22), and Eq. (25), into Eq. (26) yields:
d -
ApTsp Le =Q, (33)
dt,
Dividing Eq. (33) by Eq. (32) yields the following scaling ratio for the effect parameter:
Q
Ap= Q_M (34)

P

Expanding Eq. (34) using Eq. (20) yields the following ratio:
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The solution to Eq. (35) is found by scaling each term individually such that:
Q Q Q Q
ZA == 5 lA =20 5 ﬂ'A =27 ;"'ﬂ'A = = (36)
Qp Qe Q;p Qe
Eq. (36) provides the scaling ratios for the individual effect parameters of a single dynamical
process.
4.3.4 Similarity Criteria and Scaling Approaches

Table 4-1 lists the five different combinations of constant scale factor ( 4,, Ay ) transformations
that have been applied to the prototype S and @ coordinates. Each combination results in a
different scaling method with a unique set of scaling criteria. All of the scaling methods
preserve the invariance of the normalized process metric under transformation. That is, 7, =1

for all of the scaling methods even though the reference time-scale in the model may be dilated
or contracted relative to that in the prototype.

Table 4-1 Scaling Methods and Similarity Criteria Resulting from Two-Parameter
Transformations

Basis for Process Space-time Coordinate Scaling

~ ~ Covariance 1 dg, 1 dg,
d :d _ =
o =0u And Principle o, dt, o, dt,

Metric
Invariance

p—ao Coordinate Transformations
2-2 Affine Dilation - Strain @- Strain Identity
ﬁR:/ﬁtA;a)R:;tB ﬂR:ﬁ“;a)R:ﬂ’ ,BR:l;a)Rzl ﬂRZI;(OR:/?, ﬂRZl;&)R:1

Similarity Criteria

A
N 7y =ty =1 Ty =ty =1
s

The five scaling methods are subsets of a two-parameter general affine transformation in the
parameter plane. The first scaling method is based on a two-parameter, two-coordinate affine
transformation (2-2 affine transformation) without translational components. The 2-2 affine
transformations do not preserve distances or angles. However, they do preserve parallelism. In
this case, prototype geodesics would be parallel to model geodesics in the transformed space.
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The second scaling method is based on the dilation transformation, which is a similarity
transformation without translational components. A similarity transformation is a one-to-one
mapping of the plane onto itself such that each distance is multiplied by a single constant scale
factor. Although it is typically called a dilation transformation, distances can be dilated or
contracted. Angles and shapes remain invariant under a dilation transformation.

The third and fourth scaling methods are based on strain transformations. They are essentially
unidirectional dilation transformations. The £ -strain transformation applies a constant scale

factor, A,,tothe f-coordinate while leaving the @-coordinate unchanged. Conversely, the
w-strain transformation applies a constant scale factor, 4, , to the @-coordinate while leaving

the S -coordinate unchanged. The scaling analyses performed for the Advanced Plant

Experiment (APEX) for the AP600 and AP1000 test programs used a one-half time scaling
approach that can be shown to be an w-strain transformation of the coordinates. [1]

The last scaling method is based on the identity transformation. The identity transformation
preserves distances between points in the prototype coordinates and the model coordinates.
Distances and angles are invariant under an identity transformation. Many of the legacy nuclear
test facilities described in Appendix A of NUREG-1230 were designed using the well-known
power-to-volume scaling approach. Power to volume scaling can be shown to be an identity
transformation of the coordinates.

4.4 Method of Geodesic Separation to Assess Scale Distortion

The DSS method describes processes as finite curves on the [ — Q-7 surface. The separation

between corresponding points on the prototype geodesic and the model geodesic represents the
scale distortion at a particular normalized process time, 7. For an ideally scaled process, the
prototype geodesic and the model geodesic will overlay exactly when plotted in normalized
process space-time. However, any distortion in the scaling process will create a local separation
between the two geodesics. Integrating the geodesic separation over the entire duration of the
process yields a dynamical assessment of the scale distortion. This approach is similar to
Einstein’s study of geodesic deviation to determine the rate at which two inertial bodies
traveling along geodesics accelerate towards each other. However, rather than examining the
second time derivative of the geodesic separation, the study of scale distortion can be fully
implemented using the values of geodesic separation and its first derivative.

For purposes of illustration, let a scale distortion be introduced such that the prototype geodesic
and the model geodesics do not overlay in process space-time as shown in Figure 2. To

determine the scale distortion, it is necessary to calculate the separation distance, 771(%) ,
between the points ( ﬂp,ﬂp) and ( B Qu ) along the null geodesics as shown in Figure 2.

The simplest approach is to consider the metric for a flat space defined as follows:

d. =d g +dQy’ (37)
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The subscript y has been added to denote a flat space. The normalized metric for the null
geodesic is given by:
0=dp*-7dQ’? (38)

Substituting Eq (38) into Eq. (37) and taking the square root yields the differential expression
for the geodesic separation in the parameter plane:

dr, =v1+7°dQ (39)

0.40

0.50

0.60
0.70

1/15=1.0

Figure 2 A scale distortion is introduced such that a geodesic separation is created between
the model geodesic curve (points) and the prototype geodesic curve (solid line).

Integrating from QM to fZP yields the desired equation for the geodesic separation for

corresponding points on the model and prototype geodesics in the flat parameter plane:

7, (F) =1+ 2 (@ -0 ) =1+ £ [Q_%J (40)

A

This equation takes into account a second transformation of the model effect parameter when
A, #1. Eq. (40) is generally applicable to processes that evolve in flat space. That is, having a
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Gaussian curvature of K=0. It measures the local geodesic separation as a function of

normalized process time. For this simple example, the geodesic separation becomes

increasingly smaller as the model and prototype processes converge towards a common

equilibrium point. The total scaling distortion is defined as the integral of the geodesic
separation over the process time interval of interest. That is,

1%

= 7)d7 41

77T (fF_fl);UﬂZ( )‘ ( )

In this equation, the integral of the absolute value of the geodesic separation is implemented to
take into account the effect of compensating errors. The integral is evaluated over the normalized
process time interval from 0 to 1. For this example, the total scaling distortion is found to be 8.3
percent over the entire duration of the process using the flat space approximation.

The method of geodesic separation provides a dynamic analysis of the scaling distortion for the
entire duration of the process. The results for this example demonstrate that a scaling distortion
introduced at the onset of a process may not remain the same throughout the process. Therefore,
the assessment of a test facility based on a scaling distortion evaluated for a single set of
conditions may not fully characterize the scaling distortion for the entire process. It may be
overly conservative, as in this example, for processes that converge towards a common
equilibrium point. It is equally important to identify processes for which the introduction of a
scale distortion leads to M-geodesics and P-geodesics that diverge.

5. Future Research

The description thus far has been limited to the application of the DSS method to a single
dynamical process using a 1-metric. It is recognized that many practical applications require
scaling of integral systems with multiple components and coupled processes. The application
of the DSS method to integral system scaling has been developed and shall be discussed in a
future paper.

It was noted in Section 2.2 that there is no requirement that the process space-time surface
shown in Figure 1 be everywhere flat. That is, the surface can be curved and possess intrinsic
geometric properties such as the Gaussian curvature that could be used to categorize classes of
processes or provide new insights into the scaling of processes. Research is needed to develop

a Riemannian 2-metric equation of the formd7” = gijdf(id)?j that is invariant with respect to
coordinate transformations. In this equation, §; is the set of normalized metric coefficients,

%' are the normalized coordinates, and the standard Einstein summation convention for
repeated indices has been applied. The outcome of such research would represent the next major
advancement in the analysis and scaling of dynamical systems.

6. Conclusions

This introductory paper has demonstrated that the DSS method can be used to scale dynamical
processes using the invariance of a simple 1-metric equation under coordinate transformations. It
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was shown that a two-parameter affine transformation of the normalized coordinates yields five
distinct scaling approaches; including the well-known power-to-volume scaling approach. It was
shown how prototype and scaled model processes can be compared and how their relative time-
dependent distortions can be quantified using a flat-space approximation in normalized
coordinates. Three application papers have been published [21] - [23] to compare the DSS method
to existing scaling methods, to demonstrate how the DSS method can be used for test facility
optimization and for data synthesis.
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