ENHANCEMENT OF DOWNWARD FACING BOILING HEAT TRANSFER BY THE COLD SPRAY TECHNIQUE

Faruk A. Sohag*, Faith R. Beck, Lokanath Mohanta, Fan-Bill Cheung
Department of Mechanical and Nuclear Engineering

Albert E. Segall
Department of Engineering Science and Mechanics

Tim J. Eden, John Potter
Applied Research Laboratory

Pennsylvania State University, University Park, PA 16802, USA

*Corresponding author: fas153@psu.edu

ABSTRACT

In-vessel retention (IVR) by passive external reactor vessel cooling (ERVC) under severe accident conditions is a viable approach to retaining radioactive core melt within the reactor vessel. In this study, a new and versatile coating technique known as “Cold Spray” that can readily be applied to operating and advanced reactors was developed to form a micro-porous coating on the outer surface of a simulated reactor lower head. Quenching experiments were performed under simulated IVR-ERVC conditions using test vessels with and without Cold Spray coatings. Quantitative measurements show that for all angular locations on the vessel outer surface, the local CHF values for the coated vessel were consistently higher than the corresponding CHF values for the bare vessel. However, it was also observed for both coated and uncoated surfaces that the local rate of boiling and local CHF limit vary appreciably along the outer surface of the test vessel. Nonetheless, results of this intriguing study clearly show that the use of Cold Spray coatings could enhance the local CHF limit for downward facing boiling by more than 90%.

KEYWORDS

Downward-facing boiling, CHF limit, Cold Spray, Micro-porous coating, IVR

1. INTRODUCTION

Nuclear power is known to be a clean and reliable source of energy. With proper design, nuclear power plants provide safe and consistent power under well controlled operating conditions. However, from the TMI-2 accident to the recent nuclear incident in Fukushima, Japan, it is evident that severe accidents, though highly unlikely, can occur in nuclear power plants under unexpected, extreme situations. During a severe accident, the reactor core can melt down, with molten corium relocating downward into the bottom head. In order to contain the radioactive molten corium within the reactor, it is proposed to flood the reactor cavity with water to submerge the entire reactor pressure vessel (RPV). This method, also known as in-vessel retention (IVR) allows for decay heat removal from the molten corium through the vessel wall by downward-facing boiling on the vessel outer surface. The success of IVR depends on the critical heat flux (CHF) limit for the downward-facing boiling process. To increase the thermal margin for cooling of the reactor vessel following a severe accident, it is highly desirable to develop methods to enhance the CHF limit.
The concept of IVR by passive external reactor vessel cooling (ERVC) in a flooded cavity during severe accidents is a viable approach to retaining radioactive core melt within the reactor vessel. However, the feasibility of IVR-ERVC depends on the critical heat flux (CHF) distribution of the external bottom reactor vessel surface. Owing to the practical importance of this concept, much research has been done over the past 20 years. Theofanous et al. [1–3] from the ULPU facility at the University of California, Santa Barbara (UCSB), performed a full-sized simulation of downward-facing boiling on the outer surface of a hemispherical RPV using a two dimensional copper plate with separately heated zones. From the five configurations that were built, the first three were designed for the AP600 and other two for the AP1000. Configuration I simulated downward-facing boiling on the external bottom center of the vessel covering the region \(-30^\circ < \theta < 30^\circ\). Configuration II simulated a full scale reactor lower head from the bottom center up to the equator \((0^\circ < \theta < 90^\circ)\), while Configuration III is similar to Configuration II, but with an added thermal insulation structure. The angular location \(\theta\) is measured from the stagnation point. Although there is spatial variation of CHF with \(\theta\) on the vessel, the insulation structure was found to have very little effect on the local CHF limit. Configuration IV has an integrated baffle and a total of 28 burnout experiments were performed with it. The baffle structure streamlined the flow path between the RPV surface and the insulation. Despite a sudden drop in the local CHF observed at the very top of the heated wall \(90^\circ\), the baffle in Configuration IV improved the CHF from Configuration III. In order to overcome the exit phenomena found in Configuration IV, Configuration V was built with four major modifications over Configuration IV which improved the local CHF limits in the heater’s upper region to \(1.8\text{MW/m}^2\) and approached a value of \(\sim 2.0\text{MW/m}^2\) at \(90^\circ\).

Chu et al. [4] conducted a full scale, three-dimensional simulation of downward facing boiling on the exterior surface of a RPV in the CYBL (Cylindrical Boiling) facility at Sandia National Laboratory. Using a torispherical reactor vessel, two types of steady state heating experiments were carried out by heating the vessel using an array of radiant lamp panels. The bottom center was consistently at the highest temperature even though edge heat flux was higher than that at the center. The cyclic nature of the vapor dynamics and the resulting two-phase motion along the heating surface for downward facing boiling was also visually observed.

Additional quenching experiments with a copper substrate were performed by El-Genk et al. [5] in saturated water using two test sections of different thicknesses. Boiling curves were derived at six locations on the bottom center region and then at a local inclination angle of \(8.26^\circ\) along the outer surface of the test section. The heat flux increased with increasing \(\theta\) in the lower heat flux region and decreased with increasing values of \(\theta\) at very high heat fluxes. Interestingly, the thickness of the copper heater had no effect on the observed CHF values. CHF occurred sequentially from the lower most to the highest positions in that order. As the thickness of the test section increased, the difference in time between subsequent CHF occurrences also increased.

Cheung et al. [6-9] comprehensively investigated the downward facing boiling and critical heat flux phenomena on the outer surface of a hemispherical vessel. The vessel and its setup included conditions with and without surrounding insulation at the subscale boundary layer boiling (SBLB) test facility at the Pennsylvania State University (PSU). A significant spatial variation of the critical heat flux was observed with a monotonically increasing local CHF limit from the bottom center to the equator of the vessel under both saturated and subcooled boiling conditions.

Later, Dizon and Cheung [10] investigated two different methods to enhance cooling of the APR1400 reactor vessel with insulation at the SBLB facility. The first method involved the use of an enhanced vessel-insulation structure to improve steam venting through the annular bottleneck channel between the RPV and the surrounding insulation. The second method involved the use of a micro-porous coating on the outer surface of the vessel to promote heat transfer during downward facing boiling. A substantial increase in the local CHF limit was observed by both methods.
Yang et al.[11-14] also investigated the viability of using micro-porous coatings to enhance local CHF limits under IVR-ERVC conditions by performing transient quenching and steady-state boiling experiments. The micro-porous coatings consisted of aluminum (Al) and copper (Cu) coatings on Al and stainless steel (SS) vessels. The measured local boiling curves and CHF limits for the coated vessels showed substantial enhancement compared to the uncoated vessels. The steady-state boiling experiments also confirmed the durability of the micro-porous coatings after many cycles of heating and quenching.

Rainey and You [15] also investigated the effect of orientation and surface enhancement of nucleate boiling on flat surfaces made of copper. For these experiments, the surfaces were coated with diamond particles and it was demonstrated that surface orientation had no effect on the heat transfer for the coated surfaces. Furthermore, a large number of active nucleation sites, due to the coating, made the surfaces immune to variation in heater size. In a similar vein, Pranoto et al.[16] studied various block and fin graphite configurations with increased nucleation sites and found that there was enhanced heat transfer. Additional studies using porous graphite with different orientations have been done by El-Genk and Parker[17]. They found that porous graphite at different orientations gave rise to higher nucleate boiling heat transfer coefficients under both saturated and subcooled boiling conditions when FC-72 and HFE-7100 were used as the working fluid. A higher nucleate boiling heat transfer coefficient was observed for FC-72 compared to HFE-7100, with the values higher with increasing liquid subcooling.

More recently, Ho et al.[18] investigated the effects of carbon nanotube (CNT) coated surfaces and surface orientation under saturated pool boiling conditions. Pool boiling was performed in FC-72 under atmospheric conditions for two surfaces; one surface was fully coated with CNT’s and the other was patterned with an interlaced CNT coating. Both coatings were on top of a silicon substrate. A 42% increase in the average heat transfer coefficient was observed for both the coated and uncoated surfaces.

It is now widely recognized that micro-porous coatings have the ability to enhance the local CHF limits for downward facing boiling on flat and curved heating surfaces, including the RPV outer surface under IVR-ERVC conditions. However, the existing coating techniques require heat treatment on the vessel wall which is not feasible for commercial-size nuclear reactors due to the large thermal mass involved. Moreover, it is not feasible to cure the coatings on the vessel outer surface at elevated temperatures. Furthermore, due to the requirements of specialized equipment and facilities, existing thermal coating techniques are not amenable to large reactor vessels currently in operation and/or under construction. In this study, a new and versatile coating technique known as “Cold Spray” that does not require heat treatment and could be used at existing and/or new sites was developed to form a micro-porous coating on a hemispherical test vessel made of stainless steel. Quenching experiments were performed under simulated IVR-ERVC conditions using the Cold Spray coated vessel to determine quantitatively the amount of downward facing boiling heat transfer enhancement over the corresponding case without coating.

2. EXPERIMENTAL METHOD

2.1. Experimental facility (SBLB)

Quenching experiments were carried out in the SBLB test facility at PSU to simulate downward-facing boiling phenomena on the outer surface of a scaled model of RPV. The test facility, shown schematically in Figure 1, consists of a water tank, condenser, preheating and plunging support structures, a data acquisition system, photographic system, hemispherical test vessels with and without Cold Spray coatings, and a heating mantle for spatially uniform heating of the vessels. The water tank is cylindrical in shape, 1.14 m tall and 1.22 m in diameter. The setup simulates the reactor cavity of a nuclear power plant that is sufficiently large to minimize recirculation motions generated due to boiling. The test vessels, as well as the tank are made of carbon steel, consistent with the actual wall material used in commercial reactors. Three internal thermocouples located near the bottom, middle and top of the tank monitor the temperature variation. Two large acrylic viewing windows are located on either side of the tank for visualization of the boiling process on the vessel outer surface. A condenser assembly is incorporated into the assembly which
allows to study the effects of the pressure on the critical heat flux while maintaining the water level constant within the tank. The SBLB facility has been operated under steady-state boiling as well as transient quenching conditions. This paper describes the results obtained from the latter situation.

A support structure was built for preheating and quenching of the test vessel. Should the vessel be plunged at any angle other than the vertical, buoyancy forces along the vessel outer surface would present an additional unwanted angular effect on the data; to maintain a vertical orientation of the test vessel during quenching, the top cover of the vessel is attached to a hollow stainless steel rod which slides through the support structure and is guided by a bearing fixed to the top of the aluminum flat plate by bolts. Two adjustable stoppers fixed along the sliding rod ensure the desired preheating location of the test vessels and their plunging depth in the tank. To achieve a uniform temperature throughout the test vessels, a customized heating mantle that allows well-controlled uniform heating of the test vessels was designed and fabricated. The mantle has additional features like easy to fabricate, hassle-free replacement of broken components with minimum cost, and reasonable amount of time required for in-house fabrication, is shown schematically in Figure 2.

![Support Structure for Preheating and Quenching](image)

Figure 1. Schematic of the Quenching Setup in the SBLB Test Facility

2.2. Preparation of Test Vessels

The bare and Cold Spray coated hemispherical vessels are premade from 304 grade stainless steel. The test vessels have an outside diameter of 0.305 meter with a 2.54 mm wall thickness. Stainless steel is the desired material to use because it is corrosion resistant, durable, low cost, and comparable to the material used in commercial reactor lower heads. The vessel head is sealed with a top cover and an O-ring to prevent leakage and is attached to the lid by a welded flange that is connected by bolts.

In order to attach the top cover to the vessel, a same grade stainless steel flange was welded to the test vessel. The flange has a slot for the O-ring to prevent leakage and fourteen bolts to ensure leak tightness. A total of five 36 gage k-type insulated thermocouples are spot welded along an arc starting from bottom center up to the equator of the vessel. Holes having 3.81 mm with a depth of 1.91 mm were drilled in the inner surface along prescribed angular locations for mounting the thermocouples. The thermocouples were spot welded as close as possible to the center of the drilled holes. Finally, the thermocouples were fed
through the hollow stainless steel rod and then connected to the data acquisition system for data collection. Figure 2 shows a schematic of a test vessel mounted on the customized heating mantle.

![Figure 2. Schematic of the Test Vessel Being Preheated by the Customized Heating Mantle](image)

2.3. Cold Spray technique

To enhance boiling heat transfer, the test vessel was coated with a micro-porous coating using the extremely versatile Cold Spray technique [19-21]. Cold Spray is a very promising low temperature direct spray method that rapidly and efficiently creates or repairs coatings by exposing the substrate to a high-velocity jet with solid particles. In this technique, metal powders of size 5-45 μm are injected into a jet of compressed and heated nitrogen gas. A converging-diverging nozzle is used to expand the gas to supersonic conditions.

![Figure 3. Schematic of the Cold Spray System](image)

Typical gas temperature and pressures are maintained in the range 23-1000 °C and 1.5-7.5 MPa, respectively. When the gas expands, the particles present in the jet are accelerated to velocities ranging...
from 450-1200 m/s. Upon exiting the nozzle, the high velocity particles impact the substrate located approximately 5-25 mm away from the exit of the nozzle. During impact, the ductile particles undergo plastic deformation at high strain rates creating a mechanical bond between dissimilar metals or a mechanical/metallurgical bond in similar metals. A schematic of the Cold Spray system is shown in Figure 3. This process is economical, environmentally friendly, and easy to implement in flexible and portable systems. In particular, it can readily be applied to operating and advanced reactors.

The micro-porous coating was formed on the test vessel by depositing a mixture of stainless steel (SS) and aluminum (Al) as the sacrificial element. To ensure the desired coating porosity (including interconnectivity), a chemical etching with NaOH solution after deposition was used to remove the sacrificial aluminum particles. A weight ratio of 90% SS and 10% Al was chosen for coating the vessel. Figure 4 shows a coated test vessel and an image by optical microscope of the coating cross section.

![Coated Test Vessel and Microscopic Image](image)

Figure 4. (a) Micro-Porous Coated Test Vessel and (b) Microscopic Image of the Coating at 100x

2.4. Experimental procedure

Prior to quenching, the water tank was filled with filtered water and preheated to 100°C by three 12 kW immersion heaters. Heating required between 5 to 6 hours to reach saturation. The test vessel was then installed with all five thermocouples connected to a data acquisition system (DAQ). To heat the test vessel, an in-house customized heating mantle was used. Heating was performed in five minute intervals to promote heat diffusion and temperature uniformity in the vessel. Heating was continued until the vessel temperature reached ~350°C which is appreciably higher than the minimum film boiling temperature. The temperatures of both the water tank and the test vessel were monitored using a LabVIEW program. Once the test vessel reached the desired temperature, it was quenched in the water tank as previously described. All data was then recorded by both the DAQ and visually by a high resolution camera. To verify the reproducibility of the data, a selected number of runs were repeated under identical test conditions. Following the procedure described by Yang et al. [12], the uncertainty in the thermocouple locations was ±0.001m. Additionally, the estimated uncertainty in temperature measurement was found to be ±0.3°C while the maximum error in heat flux measurement above 0.1MW/m² was ±7%.

3. NUMERICAL DATA REDUCTION TECHNIQUE

Since the vessel wall thickness is very small compared to the radius, the transient conduction process within the vessel wall can be considered one-dimensional. For the quenching experiments, temperatures were...
measured on the inner surface of the vessel. To determine the temperatures along the outer surface of the vessel and the corresponding wall heat fluxes, the following one-dimensional transient heat conduction equation was used:

\[
\frac{\partial T(x,t)}{\partial t} = \alpha \frac{\partial^2 T(x,t)}{\partial x^2}
\]

(1)

where \(T(x,t) \) is the local wall temperature within the test vessel at a given angular location. The thermal diffusivity \(\alpha \) of the test vessel depends on the thermal conductivity (k), density (\(\rho \)), and specific heat (\(c_p \)) of the vessel material. The boundary conditions are (i) a thermally insulated interior, i.e., zero heat flux on the inner surface of the vessel, i.e., \(\frac{dT}{dx} = 0 \) at \(x=0 \) and (ii) the measured time variation of the inner vessel surface temperature \(T(x=0,t) \). The initial condition is simply the initial temperature before quenching, \(T(x,0) \).

The fully implicit method was employed to solve Equation (1) with the above boundary and initial conditions. Time and space were divided into \(N_t \) and \(N_x \) nodes with the step sizes of \(\Delta t \) and \(\Delta x \), respectively. Using a first order backward differencing scheme for the time derivative and a central differencing scheme for the spatial derivatives, the following equation can be formulated:

\[
\frac{T_{i,j+1} - T_{i,j}}{\Delta t} = \alpha \left[\frac{T_{i+1,j+1} - 2T_{i,j+1} + T_{i-1,j+1}}{\Delta x^2} \right]
\]

(2)

Using the first boundary condition, Equation (2) for \(i=1 \) and all \(j \) becomes

\[
T_{i+1,j+1} = \frac{(1 + 2r)T_{i,j+1} - T_{i,j}}{2r}
\]

(3)

where \(r = \frac{a\Delta t}{\Delta x^2} \).

For the rest of the nodes in space and time, Equation (2) takes the following form

\[
T_{i+1,j+1} = \frac{(1 + 2r)T_{i,j+1} - rT_{i-1,j+1} - T_{i,j}}{r}
\]

(4)

For the coated vessel, an additional interfacial condition was needed. Moreover, to improve the accuracy of the heat flux calculations, a finer step size of \(\Delta x \) in \(x \) was used in the coated region. Considering the continuity conditions for the temperature and heat flux on both sides of the interface, the following equation was used at the interfacial nodes:

\[
T_{i+1,j+1} = \frac{(1 + s)T_{i,j+1} - T_{i-1,j+1}}{s}
\]

(5)

where \(s = \frac{k_c\Delta x}{k_w\Delta x} \). In the above expression, \(k_c \) and \(k_w \) are the thermal conductivities of the coating and vessel wall, respectively. Solving Equations (1) to (5), all nodal temperatures can be obtained. Once the temperatures are determined, the local outer surface heat flux can be computed using a second order backward difference equation

\[
q'' = -k \frac{3T_{N_x,j+1} - 4T_{N_x-1,j+1} + T_{N_x-2,j+1}}{2\Delta x}
\]

(6)

where \(k \) is \(k_w \) for the bare vessel calculations and \(k \) is \(k_c \) (effective coating thermal conductivity) for the coated vessel. Since the computed temperature and wall heat flux are first-order accurate, additional uncertainty is incurred in calculating the total uncertainty for these quantities.

4. RESULTS AND DISCUSSIONS

4.1. Visualization of the quenching process

Visualizations of the quenching processes for the bare and coated vessels, under identical conditions (i.e., same initial vessel temperature and saturated water temperature) were performed to identify the differences
in the downward-facing boiling and CHF characteristics. Figures 5 and 6 show the quenching process for the bare and coated vessels, respectively, with sequential images at three time steps. Time $t=0$ refers to the instant of quenching when the vessel was completely submerged in the water tank. Based on the quantitative results and direct visualization, the following observations can be made. Firstly, the coated vessel quenched in approximately 3 seconds, much faster than the bare vessel which required 13 seconds as shown in Figures 5 and 6. A faster quench time indicates a higher cooling rate for the coated vessel than the bare vessel. A stable vapor film was observed in the initial stages of quenching for the bare vessel, indicative of film boiling heat transfer as depicted in Figure 5(a). Transition from film to nucleate boiling did not occur until more than 12 seconds into the boiling process, shown in Figure 5. A wavy film was observed at the beginning of quenching for the coated vessel as seen from Figure 6(a). Transition from the film to nucleate boiling regime occurred almost within two seconds at all angular locations except the bottom center region (Figure 6(b)). This quick transition indicates that the minimum film boiling temperature for the coated vessel is considerably higher than that for the bare vessel.

For both vessels, transition from film to nucleate boiling first took place at the upper angular locations on the vessels and then propagated downward toward the bottom center (Figures 5 and 6). Although the bottom center region of the vessel was the first section to be submerged in water, it did not quench until the upper portion was completely quenched. Evidently, the local rate of boiling heat transfer (i.e., the local cooling rate) was lowest at the bottom center and it increased from the bottom center toward the upper portion of the vessel. Figure 5(c) and Figure 6(c) show that the nucleate boiling regime is the prevailing mode of heat transfer once the CHF was reached. The CHF was identified by a vigorous production of large vapor masses and bubbles. As the CHF limit was approached, the vapor masses generated in the bottom center region had a dominant effect on the two-phase boundary layer flow along the outer surface of the vessel. This dominant feature was qualitatively the same for both the bare and the coated vessels.
Based on the above observations, it is apparent that the boiling curve for the coated vessel had shifted higher and to the right of the corresponding boiling curve for the bare vessel, which is verified in the quantitative results section. This provides a qualitative indication that the local CHF values for the coated vessel are higher than the corresponding CHF values for the bare vessel. Significant flow-induced vibration was observed during quenching of both vessels. In both cases, the test vessel and the sliding stainless steel tube were shaking strongly throughout the quenching process.

Structurally, the micro-porous coatings are composed of randomly arranged particles, often of micro-scale sizes, producing pores and interconnecting channels which provide flow paths for liquid supply and vapor escape. Evaporation occurs within the micro-porous coating as the liquid wets the heated wall while the bottom of the porous layer is filled with a continuous vapor blanket. Physically, the heat transfer enhancement in the coated vessel is attributed to four major factors that include an upsurge in the nucleation site density, an increase in the available heat transfer surface area, an enhancement of the lateral capillary-assisted liquid flow through the porous layer towards the phase-change interface, as well as the increased availability of numerous vapor escape paths provided by the interlinked pores. Because of the interconnected voids within the porous coating, the vapor escape path is no longer dictated by the critical wavelength as a result of hydrodynamic instability. The amount of enhanced heat transfer from the coating depends not only on fluid and solid properties, but also on geometrical coating parameters such as the coating thickness and pore size distribution.

4.2. Measured temperature transients and local CHF limits

To establish a baseline case for comparison, quenching tests were performed using an identical (bare) test vessel without a coating. Figure 7(a) shows the cooling curves measured at five different angular positions (0°, 14°, 28°, 42°, and 70°) on the outer surface of the bare vessel. These temperature-time curves show the time evolution from film boiling to transition boiling, up to the CHF point, and then on to nucleate boiling. The location of the local CHF limit at a given angular position corresponded to the cooling curve where the slope reached a maximum. Visually, the bottom center took the longest time to quench although it was physically submerged before the upper portion. The quenching time was observed to decrease with increasing angular positions.

![Figure 7. Local Boiling Curves Measured During Quenching (a) Bare Vessel and (b) Coated Vessel](image-url)
Comparing the cooling curves for the bare and coated vessels at the same angular locations shows that the cooling curves for the coated vessel are steeper, indicating higher local CHF values for the coated vessel compared to those for the bare vessel.

Aside from differences in the cooling curves, there were also distinct variances observed in the hydrodynamic behavior (i.e., bubble dynamics) between the two vessels. During transient quenching of the coated vessel, a large vibration and noise caused by the liquid-vapor interaction occurred. For the bare vessel, this phenomenon was not observed, regardless of the initial vessel temperature; the previously described “violent” bubbling at the start of quenching was unique to the coated vessel. It was speculated that the strong capillary action at the coating-water interface was responsible for this phenomenon. The minimum film boiling temperature is higher for coated vessel which promotes early transition to nucleate boiling entailing strong capillary action in the pores. This led to the observed violent bubbling for the coated vessel.

Another observation is that even at high initial temperatures, the vapor film surrounding the coated vessel was short lived, with film boiling changing to transition boiling at a much faster rate. Typically, film boiling for the bare vessel lasted up to 10 seconds before transition boiling began. However, even at the same initial temperature, transient quenching for the coated vessel was characterized by a short-lived vapor film with a rapid transition to the CHF point followed by nucleate boiling. The observed behavior is understood by the boiling curves (Figures 8 and 9) and the local CHF limits (Figure 10).

From Figure 8 it can be seen that for both the bare and coated vessels, the CHF increases from the bottom center to higher angular locations. Furthermore, the boiling curves shifted up and to the right for the coated vessel as compared to the bare vessel for all corresponding angular locations where the comparison is shown for the angular location of 14° only (Figure 9). The CHF limit for the bare vessel monotonically increased with increasing angular location (Figure 10). However, for the coated vessel, the increase of CHF from the bottom center to higher locations did not follow a linear trend. As described by Yang et al. [12], the bottom center behaves as a singularity point where the liquid flows from all radial directions resulting in a higher local CHF. For other angular locations, the liquid supply occurs only in the longitudinal direction owing to symmetry in the circumferential direction.

For all angular positions, the local CHF for the coated vessel were 27% to 90% higher than the corresponding values for the bare vessel. The increase in the CHF was due to the coating structure which
improved the liquid supply to the heated surface as a consequence of the capillary effect; a suction effect occurred radially and laterally through the coating. The surface coating behaves like a thin sponge, spreading the liquid. With improved liquid supply in the phase change region, dryout occurred at a much higher wall heat flux. Since the porous coating delayed the formation of a vapor blanket by promoting nucleate boiling, the local CHF limits were enhanced.

Figure 10 also compares the local CHF limits for the bare and coated vessels with those reported by Yang et al. [11-14]. As can be seen from Figure 10, the current data compared very well with that reported by Yang et al. for the bare vessel. However, for the coated vessel at angular location of 70°, the local CHF limit was below the corresponding values reported by Yang et al. using the coating formed by a heat curing method. The reason for this discrepancy is that the Cold Spray technique developed in this study has yet to be optimized to yield an improved micro-porous structure, especially at the upper portions of the test vessel.

Finally, it should be noted that the Cold Spray coating was found to be very durable during the testing process just described. In fact, no observable changes to the coating (spalling, debonding, degradation etc.) were observed after many cycle of preheating, boiling, and quenching. Clearly, the results of this promising study demonstrated that the Cold Spray technique is indeed a viable technique for forming durable micro-porous coatings on commercial-size reactors that could offer an appreciable local CHF enhancement for decay heat removal under IVR-ERVC conditions. Table 1 summarizes the results from all tests, comparing the local CHF values with the temperature at which they occurred (unit in MW/m² @ 0°C).

<table>
<thead>
<tr>
<th>Angular location (θ)</th>
<th>CHF(Bare) at Tw (Present Study) (MW/m² @ 0°C)</th>
<th>CHF(Bare) at Tw (Yang et al.) (MW/m² @ 0°C)</th>
<th>CHF(Coated) at Tw (Present Study) (MW/m² @ 0°C)</th>
<th>CHF(Coated) at Tw (Yang et al.) (MW/m² @ 0°C)</th>
<th>% Increase in CHF with Coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>0.434@163</td>
<td>0.453@147</td>
<td>0.826@187</td>
<td>0.849@235</td>
<td>90.32</td>
</tr>
<tr>
<td>14°</td>
<td>0.537@187</td>
<td>0.496@152</td>
<td>0.902@220</td>
<td>0.750@192</td>
<td>68.15</td>
</tr>
<tr>
<td>28°</td>
<td>0.690@170</td>
<td>0.578@164</td>
<td>0.907@209</td>
<td>0.823@258</td>
<td>31.45</td>
</tr>
<tr>
<td>42°</td>
<td>0.789@201</td>
<td>0.789@163</td>
<td>1.087@192</td>
<td>1.166@197</td>
<td>37.77</td>
</tr>
<tr>
<td>70°</td>
<td>0.881@173</td>
<td>0.888@159</td>
<td>1.126@196</td>
<td>1.880@217</td>
<td>27.79</td>
</tr>
</tbody>
</table>
5. SUMMARY AND CONCLUSIONS

A micro-porous coating having the composition of 90 wt. % SS and 10 wt. % Al was deposited on the outer surface of a hemispherical test vessel using the Cold Spray technique. After deposition, the composite coating was then etched in NaOH solution to achieve a desired micro-porous structure with a high degree of interconnectivity. Quenching tests were performed using both bare and coated vessels to observe the downward facing boiling process and the enhancement of the CHF from the coating. The experimental results show that the micro-porous coatings gave rise to greater CHF values than the bare surface. Moreover, the coatings showed a relatively high degree of robustness and fatigue resistance after exposing to multiple thermal shocks experienced during the CHF boiling tests. Based on the very promising results of this study, the following conclusions can be made:

1. The Cold Spray coated vessel quenched much faster than the bare vessel under identical conditions, indicating a higher boiling heat transfer for the coated vessel.

2. For both the bare and coated vessels, transition from film to nucleate boiling first took place at the upper portion of the vessel and then propagated downward toward the bottom center. Evidently, the local rate of downward facing boiling and the local CHF limit were appreciably higher in the upper angular positions of the vessel. Both of these quantities were found to increase from the bottom center toward the upper portion of the vessel.

3. Quantitative results on the measured local CHF limits show that at all angular locations on the outer surface of the vessel, the local CHF values for the coated vessel are higher than the corresponding CHF values for the bare vessel. This clearly demonstrates that Cold Spray coatings could be used to enhance the thermal margin for IVR-ERVC under severe accident conditions.

4. The Cold Spray technique appears to be a viable technique for forming micro-porous coatings on substrates with different geometries and curvatures including the outer surface of a commercial-size reactor lower head.

5. Since the Cold Spray process and related equipment is portable, flexible, and scalable, the micro-porous coatings explored in this study could be utilized in new designs, as well as existing reactors provided adequate cavity space below the lower head is available.

ACKNOWLEDGEMENT

This work was performed under the sponsorship of UJV Rez, Czech Republic. The authors wish to express their gratitude to Dr. Jiri Zdarek of UJV Rez for his strong support and valuable technical advice.

REFERENCES

