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Abstract

A well-posed two-fluid model (TFM) system of equations is necessary to obtain results that are 
physically meaningful. It is known that an incomplete TFM, leads to imaginary roots of the 
characteristic polynomial, thus rendering the model ill-posed. A common approach to fix this 
problem has been to introduce sufficient numerical/artificial diffusion to stabilize the model. The 
disadvantage is that the physical instabilities which are to be predicted by the TFM either 
disappear or get severely dampened in this process. An alternative is to introduce appropriate 
physics that stabilize the TFM at short wavelengths while preserving the physical long 
wavelength instabilities. For instance, in near-horizontal stratified flows the appropriate physical 
mechanism is surface tension. However, it is not apparent what such a mechanism should be in 
dispersed bubbly flows.  
 
It was demonstrated by Pauchon and Banerjee [1] that the inclusion of the momentum transfer 
due to interfacial pressure along with virtual mass force makes the model conditionally well-
posed up to a gas volume fraction of 26%. However, in practice one may observe bubbly flows 
having gas concentrations beyond this limit. Hence it is important to make the behavior of the 
TFM well-posed for the entire range of gas volume fractions that is physically permissible. In 
this paper, the mechanism of bubble collisions is considered to make the TFM well-posed. 
Furthermore, it is also shown that the introduction of collision force model is necessary to get the 
right void wave propagation velocities. Comparisons are made with the data of Kytomaa and 
Brennan [2]. Finally, it is demonstrated with the CFD calculations on a bubble column that for 
the case of vertical bubbly flows, if the appropriate physical mechanisms are considered, the 
TFM can be made well-posed.  
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1. Introduction 

 
The two-fluid model (TFM) of Ishii [3] comprises of a set of governing equations for each of the 
constituent phases. The TFM is very elaborate and it may be applied to any of the two-phase 
flow regimes. Due to its complex nature, it is a common practice to include terms that are 
straightforward to implement, and for which closure relations exist. As a result, there is always a 
possibility of missing essential physics while implementing the TFM in a code. This may result 
in the model being ill-posed because of incompleteness. 
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To overcome the issue of ill-posedness, the TFM is regularized by adding artificial terms to the 
governing equations or by the use of a coarse grid or first order numerical schemes which 
introduce sufficient numerical damping. The disadvantage of using such a method is that, if the 
system is over-damped, the two-phase flow instabilities may also be eliminated along with the 
high frequency oscillations arising from the ill-posedness of the TFM. The approach used here is 
to regularize TFM on a physical basis so that the inherent dynamics of the flow are preserved. 
Previously, Pauchon and Banerjee [1] and Park et al. [4] have shown that the bubbly flow TFM 
can be made conditionally well-posed (up to 26% void fraction) by considering the contributions 
from the interfacial pressure difference and virtual mass force.  
 
It has been concluded by researchers including Haley et al. [5] and Park et al. [4] that the 
transition of the eigenvalues from being real-valued to complex-valued is associated with the 
flow regime transition. However, in some practical applications involving bubbly flows, it may 
be observed that local void fraction may exceed 26% where the TFM still needs to be well-posed 
which cannot be achieved with the existing closure models. In the present work the physical 
mechanism considered to regularize the TFM beyond this limit is a pressure force arising bubble 
collisions. In the framework of particle flows, there exist quite a few models to account for inter-
particle collisions including Ogawa et al. [6], Lun et al. [7], and Boelle et al. [8]. Most of them 
are derived from the collision kernel which occurs on the right hand side of the Boltzmann 
transport equation. The model of Alajbegovic et al. [9] is used here, which has been 
benchmarked with particle flows having similar sizes comparable to bubbles in air-water two-
phase bubbly flows. In the present research, it is shown that the collision force makes the TFM 
unconditionally well-posed. In addition, it is shown that the proposed collision force is capable 
of giving a reasonable estimation for the material wave velocities. Finally a CFD application 
illustrates the advantage of the approach. 
 
 

2. Two-fluid model 

The TFM consists of a set of governing equations for the constituent phases treating them as 
inter-penetrating continua. The current focus is on the hydrodynamic interaction between the 
constituent phases, and hence the energy equations will not be considered. Two-phase flows are 
observed to have quite a few flow instabilities which arise due to difference in density and/or 
relative velocity between the two phases. Since the TFM allows each of the phases to have its 
own velocity field, it has the capability to model flow dynamics driven by the relative velocity 
between the phases. It is an important tool in analyzing transient phenomena such as sudden 
mixing of phases or flow regime transition where the constituent phases are weakly coupled. In 
comparison, in the drift flux model introduced by Zuber and Findlay [10], the velocities of the 
phases are related by the drift flux correlations depending on the flow regime and it cannot 
resolve local instabilities. However the drift flux model is often considered reliable for flows that 
are strongly coupled and it can represent global instabilities, e.g., flow excursions and density 
wave oscillations.  
 
For the current research, the adiabatic TFM applied to vertical bubbly two-phase flows is 
considered for which the continuity and momentum equations described for each phase are given 
by (Ishii [3]), 
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where, k = 1 for liquid and k = 2 for gas phase.���,���,�
�� are the void fraction, density and 
velocity vector corresponding to phase k. Since the research presented here is restricted to the 
case of adiabatic flows, the interface mass transfer rate is zero, �  = 0. Similarly, the 
momentum transfer due to mass transfer is also neglected. The term ���  represents the 
averaged contribution from the net momentum transfer occurring at the interface between the 
two phases. The interfacial momentum transfer term ��� is given by, 
� ��� � ���� � ���� � ���� ������� (3) �

The terms from left to right represent contributions from drag, lift, wall, and virtual mass forces 
respectively. Basset force is neglected due to the complexity involved in implementing the term. 
Table 1 summarizes the models used in the current analysis. 
 

Table 1 : Summary of interfacial momentum transfer models 
Force Model 
Drag Ishii-Zuber [11] 
Lift Auton [12] 
Wall Antal [13] 
Virtual mass Drew and Lahey [14]

 
For linear stability analysis, the 1-D form of the governing equations are used that are similar to 
Lopez de Bertodano et al. [15]. The system of equations is given by, 

� ����� � �� ��
� � !� (4) �
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The momentum transfer contributions due to drag is given by, 

� �"�� � �'(�"�� )�*+ ,
-,
-� (8) �

The drag coefficient varies depending on the type of flow regime being analyzed. For air-water 
turbulent flows, the drag correlation of Ishii and Zuber [11] for a multi-particle system is used, 

� )� � .'*+/�0�1 23 � 34	546��"�7893:	546��"� ;"� (9) �

where, 
� 6��"� � �3 � �"��	<� (10)

The momentum transfer due to virtual mass force is given by Drew and Lahey [14] as, 

� �"��� � �"��)�� #*�
�*� � *"
"*� $� (11)

For the case of potential flow around a sphere, CVM = 0.5. For deformed bubbles, analytical 
solutions can be obtained for CVM as shown by Lamb [16]. 
 
In the present study, the interfacial pressure force is also considered. The difference between the 
interfacial pressure and the continuous phase pressure can be obtained using Bernoulli’s princple 
as shown by Stuhmiller [17]. It is given by, 
� ��� � �� � �)=��,
-,"� (12)

The coefficient Cp = 0.25 is used which is obtained for the case of potential flow by averaging 
over the surface of the sphere. Drew and Passman [18] conclude that for dispersed flow regime, 
the pressure in the dispersed phase is almost equal to the pressure at the interface, and 
hence,��"� > �". The effect of the interfacial pressure difference term on the mathematical 
behaviour of the TFM will be shown with the help of linear stability analysis. 
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3. Characteristics

The mathematical behaviour of the TFM can be studied by performing a characteristic 
(eigenvalue) analysis. As mentioned before, depending on the nature of the characteristic roots, 
the system can be classified as well-posed or ill-posed. Pauchon and Banerjee [1] were among 
the first to apply this idea to analyze the TFM for vertical bubbly flows. The system of equations, 
Eq. (3) – Eq. (6), is recast into the following form, 

� ? ��� @ � A �� @ � * �"� " @ � B � !� (13)

where, @ � C�"��
"�
����D�. As shown by Pauchon and Banerjee [1], the evolution of the 
solution from an initial condition can be understood by solving, 
� EFG�A � H?� � !� (14)

This results in 4 eigenvalues, 2 of which correspond to acoustic wave speeds and the other 2 to 
the material wave speeds. The acoustic wave speeds, when considered, are always real for 
subsonic conditions. It is the material wave speeds which determine the well-posedness of the 
TFM under consideration. Pauchon and Banerjee [1] define the parameter HI as, 

� HI � H � 
�
" � 
�� (15)

so that the dimensionless eigenvalue depends only on�". In addition, it is shown by Pauchon and 
Banerjee [1] that it is along HI given by Eq. (15) that the quantity conserved can be closely 
approximated by��". The parameters used for the stability analysis are listed in Table 2. 
 

Table 2: Parameters for characteristics analysis 
Parameter Value 

�1 1000 kg/m3 

�2 1 kg/m3 

u1 0 m/s 

u2 0.2 m/s 

�1 10-6 m2/s 

�2 1.56 x 10-5 m2/s

 
As seen in Fig. 1, the TFM for vertical bubbly flows with the interfacial pressure and the virtual 
mass terms where,�)= � !	.J,�)�� � !	J is well-posed up to �" � !	.5. This result is in 
accordance with the work of Pauchon and Banerjee [1], and Park et al. [4]. Physically, it is 
possible to have bubbly two-phase flows with��" K !	.5, where the TFM should ideally be well-
posed. Even for the case of low superficial gas velocities it can be seen that the void fraction is 
higher locally, for instance near the entrance region where the spargers are located. It is 
important that the TFM be well-posed for such cases. 
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Figure 1: Characteristics with interfacial pressure and 
virtual mass

4. Collision 

 
To overcome the issue of conditional well-posedness, the mechanism of collision is considered. 
It is observed experimentally that in regions of higher void fractions, the bubbles have a higher 
tendency to collide, being closely packed. It is therefore important to consider a collision 
mechanism to make the TFM more complete. Although collision model derived assuming hard 
sphere dynamics and instantaneous, binary collisions is far from ideal for bubble-bubble 
interactions, it is currently the only available model. The present study focuses on the impact that 
such a model can have on the well-posedness of bubbly two-phase flows and not in deriving a 
more physical model. In the field of fluid-particle flows, there exist several models to account for 
this effect. Chapman and Cowling [19] were among the first to derive an expression for the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
collision force starting from the Enskog kinetic equation. A similar approach was adopted by 
Ogawa et al. [6], Lun et al. [7], and Boelle et al. [8]. In the present research, the collision force 
model of Alajbegovic et al. [9] is considered which is used for CFD calculations of vertical two-
phase flows having density ratio and particle size similar to that of air-water bubbly flows. The 
expression is given by, 
� �LMNN � ��	 O��" � ��)������"��""P.
"Q 
"Q������ � 
"Q 	 
"Q�������RST� (16)

which uses the radial distribution function, ���"�.Here the model proposed by Carnahan and 
Starling [20] is used, 

� ���"� � . � �".�3 � �"�U� (17)

which increases considerably with an increase in��". It should be noted the contribution from the 
bubble-bubble collisions is to be considered only in the momentum equation for the gas phase, 
and not as an action-reaction force pair between the gas and liquid phases. 

8763NURETH-16, Chicago, IL, August 30-September 4, 2015 8762NURETH-16, Chicago, IL, August 30-September 4, 2015



 
Eq. (16) is adapted for the case of air-water bubbly flows so that it could be used for linear 
stability analysis, as well as for numerical calculations. Assuming the bubbles to be in turbulence 
equilibrium with the continuous phase, the stress tensors in the two phases can be related by, 
� 
"Q 
"Q������ > 
�Q 
�Q������� (18)

The bubble induced component of the stress tensor in the liquid phase given by Lopez de 
Bertodano et al. [21] is, 
 

� 
�Q 
�Q������ � V(8J ! !! '8J !! ! '8JW
3.)���",
-,"� (19)

The particle stress tensor 
"Q 
"Q������ is assumed to be isotropic. Hence, Eq. (15) can be reduced to, 
� �LMNN � �)LMNN��)��" �	 C���"��"U,
-,"RD� (20)

For the case of linear stability analysis, Eq. (21) in 1-D form can be rewritten as, 

�

�LMNN � �)LMNN��)��" X2'�""
-"���"� � �"U
-" Y���"�Y�" ; ��"� 
� .�"U
-���"� �
-� Z�

(21)

where, )LMNN � 3	! is used for simplicity. When Eq. (13) is evaluated after adding the collision 
term, it can be seen that the roots associated with the material waves are real for the entire void 
fraction range. The TFM is thus made unconditionally well-posed by regularizing the model with 
the addition of missing physics. In addition, it can be observed (Fig. 3) that the prediction of the 
material wave velocities from the TFM developed in the present study is in reasonable agreement 
with the data of Kytomaa and Brennan [2]. 
 

5. CFD Analysis 

The TFM developed in the present study is extended for 3-D CFD analysis. The Eulerian TFM in 
Ansys Fluent 15.0 is used to perform the CFD calculations. The experiment of Reddy Vanga 
[22] is chosen, where air-water two-phase bubbly flow experiments were conducted to study the 
buoyancy driven plume instability. The computational domain consists of a rectangular cross-
section 0.1 m by 0.02 m having a height of 0.3 m. The gas superficial velocity at the inlet was set 
at 2 mm/s. The mesh sizes chosen are �x = 5 mm, and 1.25 mm. The respective time step sizes 
are �t = 8 ms, and 2 ms. The QUICK scheme is used for spatial discretization, and a second-
order implicit scheme is used for time marching. The higher-order numerics ensure that the 
effect of numerical diffusion is minimized. 
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Figure 2: Characteristics with collision

Figure 3: Comparison with the data of Kytomaa and Brennan [2]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Initially, the default CFD TFM is used without the inclusion of interfacial pressure or collision 
mechanisms. It is observed that the CFD calculations with 5 mm mesh captures the plume 
dynamics as seen in Fig. 4, which shows instantaneous void fraction distributions at three 
different instances. When the mesh is refined, non-physical high frequency void fraction 
distributions start to appear as seen in Fig. 5. This is an indicator of ill-posedness in the TFM 
used for CFD calculations. When the interfacial pressure and collision terms are added, the TFM 
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Figure 4: Instantaneous void fraction distributions for �x = 5 mm 

Figure 5: Results with (left) ill-posed, (right) well-posed TFM for �x = 1.25 mm

becomes well-posed. It is shown in Fig. 5 that the solution is free from high frequency void 
fraction waves when the regularized TFM is used. Thus it is shown that the linear stability 
analysis for 1-D TFM can be extended to 3-D TFM to resolve the issue of ill-posedness. 
 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. Conclusions

A well-posed TFM for bubbly flow is developed in the present study based on a mechanistic 
approach. Physical regularization is achieved by adding the momentum transfer from bubble 
collisions. The effect collisions on stability is demonstrated with the help of linear stability 
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analysis. Previously, it was shown by Pauchon and Banerjee [1], Haley et al. [5], and Park et al. 
[4] that the TFM is conditionally well-posed with the cut off void fraction being dependent on 
the coefficients of the closure relations for virtual mass and interfacial pressure. With the 
addition of collision mechanism, it is seen that the TFM becomes well-posed for the entire void 
fraction range of practical interest. This is a significant improvement considering the fact that the 
bubbly flows can prevail even at instances where the local void fraction goes beyond ��" �!	.5. Additionally, it is observed that the material wave velocity obtained with the TFM 
developed in the present study agrees reasonably well with the data of Kytomaa and Brennan [2]. 
Finally, it is shown that the analysis with 1-D TFM can be extended to a CFD application and 
that convergence study becomes feasible.  
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