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ABSTRACT 
 
Safety analysis and the form how this methodology meets safety objectives, is important in the aim to 
demonstrate that nuclear power plants can operate safely. In this line, the safety guidelines of the 
International Atomic Energy Agency (IAEA) stablish that safety analysis of the plant design should apply 
deterministic and probabilistic methods. 
 
These studies are complementary, while the two approaches are focused on compliance with the 
acceptance criteria, the deterministic analysis focuses on verification of limits of damage (usually through 
safety margins), while the probabilistic focuses on verification of limits of frequency. In this context, it is 
essential to include in the safety analysis the study of uncertainties. For this reason must be shown that the 
results are stable to a realistic variation of input parameters into such models. This aspect is more 
important when realistic codes are used to carry out the analysis of security. 
 
In this context, this paper presents an application of the uncertainty and sensitivity analysis to a Large-
Break Loss of Coolant Accident, LBLOCA, in the cold leg of a Pressurized Water Reactor (PWR) using 
the thermal-hydraulic code TRACE. The aim is to characterize the behavior of the Peaking Clad 
Temperature (PCT), using an order statistic method, as Wilk’s method, comparing it with a parametric 
regression model, a metamodel. The metamodel is trained with different sample sizes in order to 
determine the minimum size required to improve the results obtained by the Wilks method.  
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1. INTRODUCTION 

 
Nuclear industry has relied on the concept of defense in depth and safety margins to deal with the 
uncertainties associated with the design and operation of nuclear facilities. This approach suggests 
making extensive use of redundancy, diversity and large margins to guarantee plant safety in a 
conservative way [1]. In this context, both deterministic and probabilistic safety analyses are performed 
with an aim to achieve regulatory approval of NPP (Nuclear Power Plant) design and operation according 
to well-established licensing basis. 
 
What concerns Deterministic Safety Analysis (DSA), recently, the International Atomic Energy Agency 
(IAEA) produced guidance on the use of deterministic safety analysis for the design and licensing of 
nuclear power plants (NPPs): ‘‘Deterministic Safety Analysis for Nuclear Power Plants Specific Safety 
Guide,’’ Specific Safety Guide Nº. SSG-2 [2] (hereinafter referred to as SSG-2). SSG- 2 addresses four 
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options for the application of DSA. Options 1 and 2 are conservative and they have been used since the 
early days of civil nuclear power, and are still widely used today. However, the desire to utilize current 
understanding of important phenomena and the availability of reliable tools for more realistic safety 
analysis without compromising plant safety has led many countries to use option 3. Option 3 involves the 
use of best-estimate codes and data together with an evaluation of the uncertainties, the so called BEPU 
methodologies.  
 
The IAEA Safety Report series Nº.23 “Accident analysis for Nuclear Power Plants” [3] already 
recommended sensitivity and uncertainty analysis if best estimate codes are used in licensing analysis. A 
comprehensive overview about uncertainty methods can be found in the IAEA Safety Report Series Nº.52 
“Best Estimate Safety Analysis for Nuclear Power Plants: Uncertainty Evaluation”, issued in 2008 [4]. 
 
Several BEPU approaches have been developed in a scope that are accepted by the regulatory authorities 
nowadays to perform deterministic safety analysis. In [5], it is presented the results and the main lessons 
learnt from Phase V of BEMUSE, an international program promoted by the Working Group on Accident 
Management and Analysis (GAMA) of OECD to address the issue of the capabilities of best-estimate 
computational tools and uncertainty analysis. The scope of Phase V is the uncertainty analysis of a 
LBLOCA in a Pressurized Water Reactor. Fourteen participants from twelve organizations and ten 
countries participated in the Phase V of BEMUSE. 
 
Best Estimate Plus Uncertainty (BEPU) approaches for the analysis of a particular design-basis accident 
assumes that the uncertainty in the safety outputs [i.e., the figures of merit (FOMs) involved in the 
acceptance criteria of the analysis] derives from the uncertainties in the inputs to the calculations (initial 
and boundary conditions) and those arising from the computational model. These FOMs are usually 
extreme values (minima, maxima) of safety variables during the transient (PCT, CHF …). Current BEPU 
methodologies mainly rely on a probabilistic description of the uncertainty and on the use of statistical 
techniques to estimate it. In this framework, the uncertainty of a FOM can be identified with its 
probability distribution.  
 
Most of BEPU approaches accepted by the regulatory authorities are based on propagation of input 
uncertainties and make use of the Wilks’ –based methods to determine the number of calculations of the 
output, i.e. FOMs, needed to verify compliance of acceptance criteria with “standard tolerance levels 
(STL)”, typically 95/95 in accordance with current regulatory practice. Accordingly, the value of the 
FOM that is compared with the corresponding acceptance criterion is often an upper or lower tolerance 
limit with level 95/95 instead of the FOM probability distribution. For example, it is often used one-side 
tolerance interval of FOM based on the use Order Statistics (OS) of first order with STL=95/95, which 
requires a sample size of N=59 runs 
 
The main advantage of using first order statistics (FOS) based on Wilks’ formulae to derive the STL is 
that it provides always a conservative result with a few runs of the computer code. This way, the 
computational cost is kept practicable since the simulation of the evolution of the plant transient for each 
sample of inputs using complex Thermal Hydraulic (TH) models of NPP is very expensive in terms of 
computational cost. However, FOS linked to BEPU approaches provides often very conservative results. 
Several authors have explored the advantage of using OS of higher levels, which not only reduce 
conservatism but also increase the computational cost [6, 7]. Other authors propose the use of sensitivity 
and uncertainty analysis in an integrated manner within the framework of BEPU approach [3, 5] 
 
This paper focuses on the study of NPP accident scenarios based on the BEPU approach and the use of 
order statistics according to the current practice for the formulation, propagation and analysis of 
uncertainties, with the identification of representative parameters and ranges of uncertainty to be 
considered together with boundary conditions and inputs to the best estimated TH code. In addition, the 
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paper introduce a parametric alternative method to the use of the traditional first order statistic. The 
results of the use of the alternative method are compared against the traditional one. The alternative 
method should be conservative in nature also but producing not only more realistic and less conservative 
results but also keeping computational cost practicable. 
 
In particular, the case of application selected for the feasibility study of the proposed methodology 
considers a LBLOCA in the cold leg. Specifically, the study focuses on the analysis of the uncertainty 
associated with the PCT as FOM by comparing the use of first order statistics against metamodels. 
 
1.1. BEPU Approach 
 
Option 3 requires implementation of a BEPU approach consisting of at least a detailed evaluation of the 
uncertainties, and therefore, several calculations are performed to estimate the probability distribution of 
the FOM, or rather some descriptor of this distribution, for instance, a tolerance interval. SSG 2, in 
accordance with current regulatory practice, recommends that the value that should be compared with the 
acceptance criterion is an upper tolerance limit with level 95/95. This is a statistic that encompasses the 
value of the FOM with a probability of at least 0.95 with a 95% confidence level (STL). Thus, changes 
can be made to the plant provided that the tolerance level does not exceed the licensing acceptance 
criterion. A typical procedure used in BEPU approaches can be summarized in the following ten steps: 
 

1. Selection of the accident scenario 
2. Selection of the safety criteria linked to the accident scenario under study and the FOM involved 

in the acceptance criteria 
3. Identification and ranking of relevant physical phenomena based on the safety criteria 
4. Selection of the appropriate TH (Thermal Hydraulic) parameters to represent those phenomena 
5. Identification of relevant safety-related systems involved in the accident scenario. Establish 

conservative assumptions on the availability of such safety systems. 
6. Development of the TH computer model of the accident scenario, e.g. develop an input for 

TRACE integrated into the SNAP platform [8, 9] 
7. Association of PDF (Probability Density Functions) for each selected TH parameter 
8. Random sampling of the selected TH parameters and plant configurations according to PDF. 

Sample size (N) will depend on the particular statistical method and the acceptance criteria 
adopted to verify compliance of safety criteria. Perform N computer runs to obtain FOM for each 
run. 

9. Processing the results of the multiple computer runs (N) to estimate either the probability 
distribution of the FOM, or rather some descriptor of this distribution, such as for example a 
percentile of the FOM, or a tolerance level of FOM with STL using OS, etc.  

10. Verify compliance of acceptance criteria for each FOM depending on the particular statistical 
method and acceptance criteria adopted. 

 
Despite of SSG 2 recommends development of uncertainty analysis based on the use of OS (normally 
first order to produce FOM with STL), several alternatives can be explored integrating not only 
uncertainty but also sensitivity analyses to produce conservative results in order to provide more realistic 
and accurate results keeping computational cost practicable. 
 
2. ORDER STATISTICS AND METAMODELS 
 
2.1. Order Statistics 
 
Since best-estimate plus uncertainty analysis was approved by Nuclear Regulatory Commission (NRC), 
several uncertainty approaches have been proposed and applied in nuclear industry in the context of best-
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estimate code calculations. The Wilks’ method [10] is a most popular statistical method used in the 
thermo-hydraulic codes uncertainty analysis. Wilks’ method is based on the idea of determining the 
minimum number of simulations of the thermohydraulic code in order to infer a certain coverage of a 
population, with a certain confidence, thus is a nonparametric statistical tolerance limit. 
 
The starting point of the problem setting is that a sample of size n is obtained sampling the input 
parameters according to their corresponding probability distribution. This sample is used as simulation 
code inputs and n values of the interest output are obtained. The probability distribution of the output f(y) 
is an unknown function. Tolerance limits are obtained using the Wilks method as: 

 

ܲ ቀ׬ ݂ሺݕሻ݀ݕ ൐ ߛ
௎
௅ ቁ ൌ  (1)                                           ߚ

 
Where  is the coverage, β is confidence level, L and U the lower and upper tolerance limits.  In the case 
of the one sided tolerance interval the lower tolerance limit is selected to be -∞. 
 
Next, a set of result parameter values picked from the unknown distribution f(y) are arranged in ascending 
order. When the minimum value is marked with index r and the maximum value with index s, Equation 
(1) can be written as  

 

ߚ ൑ 1 െ	∑ ቀ
݊
݆ቁ ݕ

௝ሺ1 െ ௡																																																															ሻேି௝ݕ
௝ି௦ି௥ (2) 

 
In the case of the one sided upper tolerance interval the lower tolerance limit is selected to be -∞ and the 
upper tolerance limit is the highest value obtained in the random sample if the first order Wilks is used 
(s=n). Substituting s=n and r=o in Equation (2) the following expression is obtained 

 
1 െ ௡ ൒  (3)                                                                       ߚ

 
So, if the output sample is ordered the maximum value of the sample infers the  percentile of the output 
population with a β confidence. For example, if according with current regulatory practice, a Standard 
Tolerance Level (STL) 95/95 is selected a sample of 59 code runs is required,  
 
The experience has determine that the use of the first order statistic leads to a conservative result. The 
BEMUSE analysis  indicated that applying the Wilks formula to the 4th or 5th order usually produced a 
more realistic tolerance limit of the output code, at the price of some additional code runs. Table I shows 
the minimum number of code runs from the 1st order to 5th order for a STL 95/95. 
 
 

Table I: Minimum number of code runs 
 

Order Wilks formula Minimum number of 
code runs (n) 

Order Wilks formula Minimum number of 
code runs (n) 

1 59 4 153 
2 93 5 181 
3 125   

 
 
2.2. Metamodels 
 
An alternative to Wilks method in the uncertainty analysis of thermo-hydraulic codes is the use of 
metamodels or surrogate models. The main idea of a metamodel is to approximate the original code 
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response by a function from a prescribed database of computations, and then use this surrogate model for 
subsequent evaluations of the response variable of interest. A metamodel is much simpler in form and 
faster to evaluate the outputs than the actual thermo-hydraulic computer codes.  
 
Uncertainty analysis by surrogate models has been previously used in analysis of thermohydraulic codes, 
for example, CSAU proposes the use of a parametric regression model, a response surface [11]. 
 
However, the parametric regression techniques can reduce their effectiveness in thermo-hydraulic models 
due to: 1) sophisticated phenomena implemented in the computer code, 2) complex patterns of behavior 
presented and 3) the thermal-hydraulic models require, in some cases, several hours to perform one 
simulation in order to simulate the full transient. Nonparametric regression procedures provide an 
alternative to parametric regression procedures that can mitigate the above problems.  
 
In this context, Storlie [12] presents a method called ACOSSO that simultaneously performs the 
adjustment to a model and the process of selection of variables in nonparametric regression models in the 
framework of smoothing spline ANOVA. This method presents an adaptive approach based on COSSO 
method [13].  
 
The State Dependent Regression (SDR) [14] method is similar to smoothing splines and kernel regression 
methods based on filtering and recursive smoothing algorithm estimation (filter nonparametric approach 
Kalman algorithm combined with Fix Interval Smoothing, FIS). The key features of the implementation 
are: 1) combination with maximum likelihood estimation allowing an estimation of the smoothing 
hyperparameters based on the estimation of a quality criterion rather than cross-validation, 2) provides 
greater flexibility in adaptation to local discontinuities, nonlinearities and not homocedastic error terms.  
 
Recently Ratto and Pagano [15] proposed a unified approach to smoothing spline ANOVA models that 
combines the best of SDR and ACOSSO. This methodology includes the fundamentals of signal 
processing and analysis of time series. The use of the recursive algorithms can be very effective in 
identifying the important functional components and in providing good estimates of the weights to be 
used in the COSSO penalty, adding valuable information in the ACOSSO framework and allowing in 
many cases to improve on the performance of ACOSSO.   
 
Last approach has been selected in this paper as an alternative to parametric regression models in the 
scope of uncertainty analysis. The approach has shown a good performance for small and medium 
training datasets in application areas [16]. Additionally, the "State Dependent Parameter Metamodelling" 
(SDP) allows estimation of the sensitivity coefficients based on the calculation of variances through the 
estimation of a metamodel that analytically approximated the mapping between the inputs and the 
outputs. This method has the advantage over classical techniques based on the calculation of the variance, 
a lower computational cost, that applied regardless of the degree of correlation of inputs and that do not 
require a specific sampling method. 
 
3. CASE STUDY 
 
3.1. Description of LBLOCA transient 
 
This work is focused on one of the most common Design Basis Accidents (DBA) in Power Water 
Reactors, a LBLOCA located at a cold leg of the reactor.  
 
As consequence of this transient, a fast depressurization of the primary is produced, and consequently the 
corresponding activation of the SCRAM signal by low pressure, continuing with the accumulators’ 
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injection and later injection of the emergency core coolant from Low Pressure Injection System (LPIS), to 
prevent the core uncovery. 
 
With the SCRAM, a reduction of the thermal power is achieved, and with the injection of water by means 
of accumulators and LPIS a core temperature reduction is produced. Heat removal through secondary 
system is not considered by the fast depressurization of the primary system.  
 
The plant selected has been a typical 4-loops PWR-Westinghouse, whose reference is Zion Nuclear 
Power Plant (NPP), and the thermal-hydraulic system code used is TRACE V5.0 Patch 4.  
 
3.2. Safety and acceptance criteria 
 
For a LOCA accident, several criteria were established by USNRC in 1974 [17] when that accident is 
produced. These criteria can be resumed mainly in three thermal boundaries that must not be exceeded: 
the peak cladding temperature, the maximum cladding oxidation of the core, and the maximum of the 
total amount of hydrogen produced during the transient. The most used criterion from thermo-hydraulic 
point of view is the PCT that must be ever below than 1477K. This criterion has been chosen as output 
variable of interest for the study. 
 
3.3. Relevant physical phenomena, thermal hydraulics parameters. 
 
Once selected, the accident scenario (LBLOCA) and the safety criterion of interest (PCT) is necessary to 
identify and rank the important phenomena affecting the progression of the transient. The PIRT process is 
used as a means for selecting the phenomena of the highest importance.   
 
In [18] is showed a comparison of the completed PIRTs, for LBLOCA in 4 loop PWR NPP, corresponding 
to three studies performed by CSAU [19], AREVA [20] and Westinghouse/EPRI [21]. In this comparison, 
common phenomena modelized by the three studies are observed such as heat transfer in different 
phases, behavior of rods, etc. However, significant differences were also observed between the three 
studies. 
 
[22] shows the description of the uncertain TH parameters considered in this case study which have 
finally selected 45 parameters later a preliminary sensitivity study. These parameters are considered as 
source of uncertainty, introducing the uncertainty through a multiplicative or additive factor with a range 
of µ±2σ, i.e., these uncertainty parameters which can act as multipliers or as additive factors for the 
reference values of the inputs selected. The probability density functions that characterize these 
parameters are normal, uniform and lognormal distributions. 
 
3.4. Description of typical PWR model 
 
The safety-related systems involved in the accidental transient are scram system, accumulators and low-
pressure injection system 
 
In [22] outlines the primary system modeled for TRACE V5.0 Patch 4 using the SNAP suite, which 
includes a tri-dimensional component type VESSEL, which represents the reactor pressure vessel 
including the core. It also includes the primary part of the four cooling loops (PIPES, 4 SGs, PRZ and 4 
PUMPS). In addition, safety systems needed in the transient supporting the primary system have been 
modeled (4 accumulators, 4 low pressure injections, all in cold legs). The large break is simulated as a 
double guillotine break by three VALVE and two BREAK components, in the cold leg. 
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There are heat structures for reactor pressure vessel, core and steam generators. The reactor pressure 
vessel (RPV) has been simulated with a 3D Vessel component, made of 31 axial, 5 radial and 8 azimuthal 
nodes. 
 
The conditions imposed for the thermal hydraulic transient simulation related to safety systems can be 
summarized as follows: 
 
 No actuation of the high pressure injection system (HPIS).  
 Accumulator’s injection at 4.14 MPa. 
 Low pressure injection system (LPIS) initiate at 1.42 MPa. Driven by a flow-pressure table. 
 Containment pressure imposed as a function of time after the break. 
 Reactor coolant pumps velocity imposed as a function of time after the break. 
 Power after scram imposed by means of a reactor power multiplier as a function of time after the 

break. 
 
4. RESULTS 
 
There are three output variables of interest, however, in order to develop the methodology, this paper will 
present the results referred to PCT. Thousand simulations of the transient were ran with the TRACE code. 
These simulations have been used with the purpose of estimate the empiric distribution function of the PCT. 
This distribution has been taken as reference for the comparison of the results obtained with the different 
methods chosen to characterize the behavior of the PCT: order statistic method, as Wilk’s method, 
comparing it with a non-parametric regression model, SDR-ACOSSO. 
 
In ¡Error! No se encuentra el origen de la referencia.Figure 3, the empirical function distribution of the 
1000 executions is shown. The value of 95% percentile (1259.5 K) has been taken as reference value. 

 
Figure 3: PCT cumulative distribution function 

 
 
4.1. Order Statistics 
 
From 1000 simulations executed of the accidental LBLOCA transient a comparative analysis of the results 
has been done by calculating tolerance  intervals using the Wilks method and order statistics 1, 2, 3 and 4. 
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The calculation of higher-order statistics implies an increase in the sample size. The minimum sample sizes 
for statistics of order 1, 2, 3 and 4 are, respectively, 59, 93, 124, and 153.  
 
Table V¡Error! No se encuentra el origen de la referencia.I shows the upper tolerance interval bound for 
the Wilks methods and higher-order statistics obtained after running the respectively simulations, 
comparing them with the reference value of 95% from the empirical function distribution. 
 
 

Table VI. Upper tolerance interval bound for the PCT (K) 
 

Order statistics Sample Size Upper limit 1000 sim. reference 

1 59 1287.7 

1259.5 
2 93 1286,6 

3 124 1284 

4 153 1263,4 

 
 

Comparing the value obtained with Wilks method first order, and other order statistics, with the reference 
value obtained for all the population (size 1000—1259.5K) it can be observed that in all cases are 
produced an overestimation of the value of the PCT.  However, using Wilks at the order 4 a more realistic 
estimate of the upper tolerance interval limit for the PCT is obtained. 
 
Table VI shows the increase in the order of the statistic, increases confidence in the estimated percentile 
value as evidenced by the proximity of the punctual estimation to reference value obtained with 1000 
simulations (1259.5 K).  
 
Thus, statistics of higher-order (2, 3 and 4) can be used with the aim of providing a less conservative 
upper tolerance limit in comparison with when the statistic of order 1 is used. A disadvantage of the use of 
statistics of higher-order, compared with the first order statistic, is the need for a greater number of 
simulations of the code. For example, the use of the statistic of order 4 increases of required sample size 
to 153 simulations (94 more than in the case of statistics of order 1), which in some cases, can be very 
difficult to obtain. 
 
4.2. Metamodel 
 
An alternative to the use of order statistics in uncertainty analysis is the use of metamodels. In order to 
compare the analysis of uncertainty under the two approaches (higher-order statistics vs metamodels) set 
a metamodels using the sample sizes corresponding to the statistics of order 2, 3 and 4, and comparing 
them with the reference value of 95% from the empirical function distribution. 
 
SDR-ACOSSO model has been used in this case as a metamodel, and it has been trained from the sample 
of 93, 124 and 153 simulations of the thermo-hydraulic transient using the remaining simulations (up to 
1000) for the validation of the results. The quality of the approximation has been evaluated from the 
calculation of typical metrics as:  
 
 Mean Square Error (MSE), which provides an assessment of the accuracy of the estimation,  
 R-square coefficient: 
 
The Table VII shows the results obtained for the previous metrics and different sample sizes. 
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Table VII. Quality metrics values of the metamodel 
 

Training sample size Validation sample size MSE R2 (%) 

59 941 310	 64.1	
93 907 139.9 80.55 
124 876 127.5 81.3 
153 847 120.6 82 

 
 
The uncertainty in the PCT can be quantified by obtaining the density function of the PCT. The input 
parameters are sampled using the Monte Carlo method and the PCT values are obtained by the metamodel 
at low computational cost, for example a sample size of 10000 for this case. The Figure 4 shows the 
density function of PCT obtained by the SDR-ACOSSO model for different training sample sizes and the 
corresponding to the reference value. Table VIII shows that with the training sample size of 93 
simulations the average value of the PCT is 1203 K and the 95% percentile is 1256 K, using a sample of 
124 simulations these values are, respectively, 1204 K and 1256 K for the sample size of 153 values 
obtained are 1204 K and 1254 K. The values obtained from the mean and the 95% percentile for the 
reference sample using the TRACE are 1207 K and 1259 K respectively. Comparing the results it is 
observed as the average estimation using the metamodel is precise observing a deviation from the values 
of the average and the percentile 95% of a maximum of 5 K, underestimating in all cases the reference 
value. 
 
 

Table VIII. Results of the average and the percentile of 95% obtained by the metamodel 
SDR‐ACOSSO  

 

	
Training sample size Average Δ (ref. val. 1207 K) 95% Δ (ref. val 1259 K)

	 93 1203 -4 1256 -3 

	 124 1204 -3 1256 -3 

	 153 1204 -3 1254 -5 

 

 
Figure 4.  Comparison of histograms obtained with 1000 simulations of the TRACE code and a 

sample of size 10000 obtained through the metamodel SDR-ACOSSO 

1120 1140 1160 1180 1200 1220 1240 1260 1280 1300 1320
0

50

100

1120 1140 1160 1180 1200 1220 1240 1260 1280 1300 1320
0

1000

2000

3000

1120 1140 1160 1180 1200 1220 1240 1260 1280 1300 1320
0

1000

2000

3000

n=
12

4

1120 1140 1160 1180 1200 1220 1240 1260 1280 1300 1320
0

1000

2000

3000

PCT (ºK) 

n=
15

3

5191NURETH-16, Chicago, IL, August 30-September 4, 2015 5191NURETH-16, Chicago, IL, August 30-September 4, 2015



5. DISCUSSION 
 

The presented study has focused on two types of analysis, the use of order statistics to obtain appropriate 
values of safety-related variables in accidental transient while the second is focused to the identification 
and implementation of alternative methods to using order statistics in the quantification of uncertainty in 
accidental sequences. 

 
The first study has focused on the comparison of the Wilks method, statistical of order 1, the most usual, 
with other order statistics. The variable in which the study focused has been the PCT. In the simulations 
carried out the conservative nature of the first order statistic has been observed. Other approaches provide 
a less conservative upper tolerance limit in comparison with when the statistic of order 1 is used, and are 
more precise with respect to the true value of the 95% percentile. 

 
The second study presents the characterization of the uncertainty in the PCT by the metamodel SDR-
ACOSSO.  59, 93, 124 and 154 simulations of the thermo hydraulic code have been used in the training of 
the SDR-ACOSSO phase in order to compare the results obtained by the metamodel with the statistic of 
order 1, 2, 3 and 4, respectively. The goodness of fit of the metamodel measured from the coefficient of 
determination, R2, is of the 64.1% due to the high number of variables selected as "inputs" and the small 
sample size. Also, it is observed as there is an underestimation of the value of percentile 95%. The increase 
of the size of the training sample the coefficient of determination improves up to 82% for samples of size 
153 and with maximum differences in the 95th percentile up to 5 K. 
 
From the results it can be concluded that in the case of a small number of simulations (n = 59) the best 
option to analyze the uncertainty is, despite the excessively conservative character, using the Wilks’ method 
with an OS of first order. However, if the number of simulations is greater than 100 the use of a metamodel 
(e.g. SDR) is a good choice since it allows to obtain both the tolerance limit 95/95 as the probability 
distribution of the PCT. 
 
In addition, the use of SDR-ACOSSO allows sensitivity analysis with respect to the input variable allowing 
learning more about the parameters that influence during the thermo-hydraulic transient to the PCT and if 
the presence of these parameters are affected by the training sample size. 
 
AKNOWLEDGEMENT 

 
This work has been supported by the Consejo de Seguridad Nuclear under the contract with reference 
SIN/4078/2013/640.  

 
REFERENCES  
 
1. Pagani et al., “The Impact of Uncertainties on the Performance of Passive Systems”, Nuclear 

Technology, 149(2), pp. 129-140 (2005). 
2. “Deterministic Safety Analysis for Nuclear Power Plants”. IAEA Specific Safety Guide Nº. SSG-2, 

(2009). 
3. “Accident Analysis for Nuclear Power Plants”, IAEA Safety Reports Series Nº 23, pp. 1–121, (2002) 
4. “Best Estimate Safety Analysis for Nuclear Power Plants: Uncertainty Evaluation”, IAEA Safety 

Reports Series Nº. 52, (2008) 
5. Perez et al., “Uncertainty and sensitivity analysis of a LBLOCA in a PWR Nuclear Power Plant: 

Results of the Phase V of the BEMUSE program”, Nuclear Engineering and Design, 241(10), pp. 
4206-4222, (2011). 

5192NURETH-16, Chicago, IL, August 30-September 4, 2015 5192NURETH-16, Chicago, IL, August 30-September 4, 2015



 

 

6. E. Zio and F. Di Maio. “Bootstrap and Order Statistics for Quantifying Thermal-Hydraulic Code 
Uncertainties in the Estimation of Safety Margins”. Science and Technology of Nuclear Installations, 
2008 , Article ID 340164, (2008) 

7. Ll. Briggs, “Uncertainty Quantification Approaches for Advanced Reactor Analyses”. Nuclear 
Engineering Division, Argonne National Laboratory, (2008). 

8. US NRC, TRACE V5. 0 Theory Manual-Field Equations, Solution, Methods and Physical Models, 
U.S. Nuclear Regulatory Commission, 2010.  

9. “Uncertainty analysis user’s manual Symbolic Nuclear Analysis Package (SNAP) version 1.2.2,” 
Applied Programming Technology, 2012. 

10. S.S. Wilks, “Statistical prediction with special reference to the problem of tolerance limits”. The 
Annals of Mathematical Statistics, 13(4), pp. 400–409 (1942). 

11. NUREG/CR-5249, “Quantifying Reactor Safety Margins. Application of Code Scaling, Applicability, 
and Uncertainty Evaluation Methodology to a Large-Break, Loss-of-Coolant Accident” (1989) 

12. C.B. Storlie and J.C. Helton, “Multiple predictor smoothing methods for sensitivity analysis: 
Description of techniques”, Reliability Engineering & System Safety, 93(1), pp. 28-54 (2008). 

13. Y. Lin and HH. Zhang, “Component Selection And Smoothing In Multivariate Nonparametric 
Regression”, The Annals of Statistics, 34(5), pp.  2272–2297 (2006). doi: 
10.1214/009053606000000722. 

14. P.C. Young, “The identification and estimation of nonlinear stochastic systems”. In A. I. et al. Mees, 
editor, Nonlinear Dynamics and Statistics. Birkhauser, Boston, (2001). 

15. M. Ratto and A. Pagano, “Recursive algorithms for efficient identification of smoothing spline 
ANOVA models”. Advances in Statistical Analysis 94, pp. 367–388 (2010) 

16. N. Villa-Vialaneix, M. Follador, M. Ratto and A. Leip. “A comparison of eight metamodeling 
techniques for the simulation of N2O fluxes and N leaching from corn crops”. Environmental 
Modelling & Software. 34, pp. 51-66 (2012). 

17. USNRC, “10 CFR 50.46. Acceptance criteria for emergency core cooling systems for light-water 
nuclear power reactors”. 

18. M. Pourgol-Mohammad, “Integrated Methodology for Thermal-Hydraulics Uncertainty Analysis 
(IMTHUA)”.University of Maryland (2007). 

19. USNRC Regulatory Guidance 1.157., “Best-Estimate Calculations of Emergency Core Cooling 
System Performance (1989) 

20. R.P, Martin, and L.D. O’Dell, “AREVA’s realistic large break LOCA analysis methodology”, Nuclear 
Engineering and Design, 235, pp. 1713-1725 (2005). 

21. S.M. Bajorek et al., "Small break loss of coolant accident phenomena identification and ranking table 
(PIRT) for Westinghouse pressurized water reactors", Proc. 9th Int. Mtg on Nuclear Reactor Thermal-
hydraulics: NURETH-9, (1998). 

22. F. Sánchez-Sáez, A.I. Sánchez and J.F. Villanueva, “Comparison of some approaches for the 
estimation of tolerance limits in the context of LBLOCA uncertainty analysis”, Proc. 16th Int. Mtg 
on Nuclear Reactor Thermal-hydraulics: NURETH-16, (2015). 

5193NURETH-16, Chicago, IL, August 30-September 4, 2015 5193NURETH-16, Chicago, IL, August 30-September 4, 2015


