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ABSTRACT 
 
A simplified but mechanistic governing equation for a reactor core isolation cooling (RCIC) system is 
developed to support investigations into severe accident mitigation strategies. Since the RCIC uses a 
single-stage impulse turbine, the model is essentially the application of Newton’s Laws for a rotational 
system. Specifically, the control volume formulation of angular momentum conservation is used to derive 
an equation of motion that is simple enough to be implemented as user input for lumped parameter codes 
such as MELCOR. Preliminary testing of the RCIC equations and solution methodology has been 
completed. The equations are integrated into MELCOR input via control functions for scoping 
calculations; the derivation of the equations and solution methods are intentionally selected to facilitate 
this effort and the subsequent scoping calculations. The MELCOR model used for the test calculations 
contains simplified representations of the RCS and RCIC piping for a generic 2000 MW BWR. Scoping 
calculations of the accident scenario at Fukushima unit 2 are presented that show promising initial results. 
In conjunction with a literature review of RCIC turbine design, a key conclusion is established that the 
simplicity and pure-impulse design of the turbine facilitates computational modeling using simplified 
(lumped-parameter) momentum methods. 
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1. INTRODUCTION 
 
The RCIC is a key system for mitigation of severe accidents, as exemplified by the unit-2 accident at 
Fukushima Daiichi where RCIC delayed core damage for about 70 hours without operator intervention 
[1-5]. Thus, the RCIC is notionally a resilient and perhaps quasi-passive system that might be counted 
upon in severe accident management guidelines (SAMGs) to manage decay heat until external pumps and 
water supplies, dubbed flex equipment/strategies, are employed to stabilize the plant. Technical 
confidence in RCIC operation under severe conditions hinges upon increased analytical and experimental 
understanding of the system. 
 
A mechanistic model is therefore required that considers the dynamic forces imparted on the turbine in 
order to support severe accident research where RCIC operates outside its design envelope. The RCIC 
uses a pure impulse turbine, so this essentially amounts to applying Newton’s Laws for a rotational 
system where the forces on the turbine include impulses from water and steam, friction losses (windage), 
shock losses in the buckets, and torque from the pump shaft. The control volume formulation of angular 
momentum conservation is used to derive an equation of motion for turbine speed that is simple enough 
to be implemented as user input for lumped parameter codes such as MELCOR. The control volume 
approach readily lends itself to integration with MELCOR, and allows for easy identification of model 
parameters that require derivation through other means such as CFD and experimental measurements. 
Alternatively, these parameters may simply be used as tuning variables through benchmarking against 
operating data (e.g., Fukushima data and RCIC startup test data). This work presents a literature review of 
RCIC turbine design, the development of a novel and mechanistic RCIC model, and test calculations of 
the Fukushima unit 2 accident sequence. 

7387NURETH-16, Chicago, IL, August 30-September 4, 2015 7386NURETH-16, Chicago, IL, August 30-September 4, 2015



2. RCIC OVERVIEW 
 
An overview of RCIC turbine design is presented here to provide context for the modeling approach. 
Thorough review of more system-oriented aspects of the RCIC can found in other sources [6,7]. For this 
work it is sufficient to note that RCIC is a steam-driven turbine-pump that provides makeup water to the 
reactor pressure vessel (RPV) following core isolation events. The turbine receives steam from the RPV, 
via relatively small piping tapped off a main steam line (MSL), which then drives a pump by means of a 
common shaft. The pump may take suction from the condensate storage tank (CST) or from the wetwell 
(WW) of the containment. The turbine discharges steam to the wetwell. 
 
The turbine in the RCIC system is a small, single-stage, compound-velocity, impulse turbine [8] 
originally designed and manufactured by the Terry Steam Turbine Company, which was later purchased 
by Ingersoll-Rand in 1974. Terry turbines are currently marketed by Dresser-Rand. The turbine is 
essentially a solid cylindrical wheel with several semi-circular ‘buckets’ that are shaped into the body of 
the wheel. All Terry RCIC applications in the US use a “G turbine frame size” [8] that denotes a 24 inch 
(0.61 m) diameter turbine wheel. Fixed nozzles and reversing chambers surround the wheel inside the 
turbine casing. Figure 1 illustrates the geometry and flow path of steam through the nozzle, turbine 
buckets, and reversing chambers.  
 

 
Figure 1. Terry turbine bucket flow (left) and interior view of turbine case (right) [11, 12]. 

 
Steam enters the semi-circular buckets after expanding through five to ten nozzles that are fixed around 
the wheel; steam flow direction is reversed 180o in the buckets. The nozzles are separated by at least three 
buckets to make room for reversing chambers that also surround the wheel. Since the steam is (almost) 
completely expanded after exiting the nozzles, which are fixed and detached from the turbine wheel, the 
expansion process itself imparts no energy on the turbine [9-11]. For this reason, the pressure drop and 
the enthalpy change over the RCIC turbine are essentially zero. This is in direct contrast to the operation 
of a reaction turbine where steam expands in the turbine blades, and the blades themselves act as nozzles. 
Hence, the typical formulas and relationships for multi-stage reaction turbines are not valid for 
mechanistic analyses of RCIC turbines. Being a pure impulse turbine, RCIC principally operates on the 
exchange of momentum and kinetic energy. Turbine motion is induced by means of steam acceleration in 
the buckets after it has been totally expanded through the nozzles. 
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The compound-velocity feature of the Terry design refers to the fixed reversing chambers that redirect 
ejected steam back into the buckets several times. The intent is to capture as much of the steam’s kinetic 
energy as possible–steam is typically reversed three to five times at lower turbine speeds before it is fully 
exhausted through small venting ports in the reversing chambers [8-10]. As shown in Figure 1, the 
reversing chambers are slightly angled to direct the steam forward (in the direction that the turbine spins) 
into the downstream buckets. 
 
The fixed reversing chambers in Terry turbines are a proven design feature for lower turbine speeds 
(typically less than 1300 rpm [9]), but there is considerable evidence that suggests the reversing chambers 
are of secondary importance for the higher speeds that RCIC operates [9, 10]. An EPRI maintenance 
manual for RCIC states that the influence of the reversing chambers is minimal for speeds above 2500 
rpm [8]. The rated speed of a typical BWR Terry turbine is around 4000-4700 rpm [8]. Therefore, it is 
reasonable to assume that the reversing chambers are only important for the initial startup of the RCIC. 
This assumption is physically intuitive upon examination of the Terry turbine geometry: Fluid flow 
between the buckets and reversing chambers requires proper alignment that probably becomes ‘out of 
phase’ when the turbine is at high speed. During startup of the RCIC, the turbine buckets are effectively 
stationary relative to the steam velocity, and thus there is proper exchange of steam between the buckets 
and reversing chambers. At rated conditions, the RCIC turbine is designed and sized such that the 
tangential velocity at the turbine radius (i.e. the “bucket velocity”) is about half the steam velocity from 
the nozzles. Conversely, Terry turbines were originally designed to have a bucket to steam velocity ratio 
of about 1:8 [10]. The relatively slow bucket velocity of the original Terry designs supports the assertion 
that the reversing chambers were more important for low speed turbine applications. 
 
The model derivation in Section 3 makes use of the following set of assumptions/assertions that are based 
on literature review of design, operation, and maintenance of Terry turbines: 
� RCIC uses a single-stage Terry impulse turbine that functions according to the exchange of 

momentum and kinetic energy. 
� Steam enters semi-circular buckets and reverses direction (~180o). 
� The reversing chambers are only important for low speed operation, such as during initial startup. 
� The expansion of steam through the nozzles is total; the expansion process converts the static 

pressure of the steam into kinetic energy to be imparted into the turbine buckets.  
 
3. MODEL APPROACH AND DERIVATION  
 
Rigorous assessment of RCIC operation for a wide range of accident conditions entails the use of a 
mechanistic model that dynamically considers the forces imparted on the turbine and predicts the 
integrated behavior of the turbine-pump. The RCIC model must also be amenable to coupling with 
system-level codes that simulate the thermal-hydraulics of the reactor coolant system (RCS) for long 
transients (i.e. several days for severe accidents). Such analyses inherently involve large uncertainties, so 
it is further desirable that the model be simple enough to facilitate fast computation of many different 
calculations. A lumped-parameter approach is therefore used to derive governing equations for RCIC. 
 
3.1.  Governing Equations for RCIC Model 
 
The RCIC governing equation is based on a control volume formulation of the angular momentum 
equation where the control volume is an enclosure surrounding the turbine buckets that slices through the 
shaft of the turbine-pump; the nozzles are outside of the control volume. This approach is adapted from 
Reference [13] for a control volume analysis of a Pelton turbine, which is similar to a Terry turbine in 
theoretical and design aspects. The turbine responds principally to the impulses of vapor and liquid water 
that exit the nozzles. A key quantity is thus the momentum flux of the fluid delivered to the turbine 
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buckets. The momentum flux of the fluid recirculated by the reversing chambers is probably only 
significant during system startup.  
 
The main impedance to turbine acceleration is resistance from the centrifugal pump. The turbine and 
pump are connected by a common shaft. Therefore, the turbine speed must equal the pump speed at all 
times, and the forces resisting the pump are felt instantaneously by the turbine. The pump displaces 
volume of fluid (water) against head of fluid being pumped, i.e., losses in the RCIC injection piping and 
RCS and the RPV pressure being pumped against. Other resistance forces on the turbine itself include 
friction losses (e.g. windage) and so-called shock losses [14] that are the result of fluid streams entering 
buckets at the wrong angle. Shock losses for the RCIC might be important for high speed operation where 
the reversing chambers no longer function ideally, especially under two-phase conditions where 
significant water flashing may disturb the nominal flow patterns. However, these loss mechanisms are 
currently neglected, and only the first-order forces on the turbine are considered: the fluid impulses in the 
buckets and the pump resistance. 
 
Equation 1 provides the pertinent scalar component of the angular momentum relationship for a control 
volume [13]. The turbine is assumed to be adiabatic, which is probably a good approximation for a pure 
impulse turbine. The turbine only spins in one direction along a stationary axis, which is the θ-coordinate 
for a cylindrical (r-θ) coordinate system. The control volume for the RCIC turbine is a cylindrical 
boundary about the wheel and buckets that intersects the shaft. The coordinate system for this control 
volume is centered at the centroid/axis of the wheel and is stationary; hence the coordinate system is 
inertial and Equation 1 is valid. An example of a non-inertial configuration would be a turbine inside a 
system that is accelerating, such as an airplane.  
 

   (1) 
 
In Equation 1,  is the radius of the turbine wheel,  is a force function over the surface of the control 
volume (with area  and volume ),  is a body force such as gravity,  is the velocity vector,  is the 
tangential component of the outlet velocity of the fluid leaving the bucket, and  is the fluid density. The 
tangential outlet velocity introduces additional important variables such as the nozzle-bucket inlet and 
outlet angles, the bucket velocity, and the angular speed of the turbine. These relationships may be 
resolved using velocity triangles. Appendix A describes how the tangential outlet velocity for the Terry 
turbine can be written as: 
 

     (2) 
  
In Equation 2,  is turbine speed (  is the bucket speed),  is the nozzle jet velocity, and  is the 
inlet/exit angle between the fluid velocity vectors and the horizontal/tangential direction of the turbine 
motion (i.e. the bucket velocity vector). This angle is discussed more in Appendix A. 
 
Neglecting minor losses, the only torque that penetrates the boundary of the control volume is the shaft 
torque. The shaft torque, which is also the pump torque, must be equal and opposite to the torque 
developed by the fluid action on the turbine according to Newton’s Third Law. Thus the first term in 
Equation 1 may be reduced to: 

    (3) 
 
In Equation 3,  is the pump torque that is generally a function of other variables including time. The 
pump torque is discussed more in Section 3.3. 
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The second term (with ) in Equation 1 is zero because this analysis neglects gravity. For one-
dimensional inlets and outlets, the third term in Equation 1 may be rewritten as: 
 

  (4) 
 
Equation 4 shows that this term represents the driving moment of the fluid flow in the buckets. The 
evaluation of this term for one-dimensional inlets and outlets is commonly demonstrated in introductory 
textbooks on fluid mechanics (e.g. [13][15]). For the RCIC model, the cross products in Equation 4 can 
be simplified upon consideration of the Terry turbine geometry. For the Pelton turbine problem from 
Reference [13], where the fluid inlet and out velocities are parallel to the bucket velocity, Equation 4 
reduces to: 

   (5) 
 
Equation 5 is the difference between the moments of outlet and inlet momentum fluxes for the Pelton 
turbine, multiplied by the effective outlet and inlet flow areas. This equation neglects losses in the bucket 
and assumes that the bucket inlet and outlet mass flow rates are identical (given by ), which reflects 
mass conservation for the bucket. The mass flow rates through the bucket are assumed to be the same as 
the mass flow rate exiting the nozzle. Hence at any given time it is assumed that  and 
the bucket velocities can be resolved using simple velocity triangles. The details of such pseudo-steady 
assumptions for the bucket flow may be revised pending CFD and experimental analyses of the RCIC.  
 
The fluid velocities for the Terry turbine are not parallel to the bucket velocity. The fluid enters the 
buckets from the nozzles at an angle that effectively reduces the moment arm of the momentum flux. 
From a design perspective, the reduced moment-arm is probably compensated for by the increased 
number of buckets and nozzles that can fit around the wheel for the Terry configuration. Figure A.1 and 
Figure A.2 in Appendix A demonstrate this velocity orientation for the Terry turbine. Thus, Equation 4 
and Equation 5 can be modified for the Terry geometry to become:  
 

    (6) 
 
Substituting the formula for  (Eq. 2) into Equation 6 yields the following expression: 
 

   (7) 
 

Using Equations 1, 2, 3, and 7, the original governing equation can now be written as: 
 

 (8) 
 
Further formulation from this point depends on the implementation scheme into the thermal-hydraulic 
code. Two possible schemes are developed and described in Section 3.2. and Section 3.3. 
 
3.2.  Quasi-steady Scheme 
 
Severe accident transients for LWRs, such as those at Fukushima unit 2, are rather slowly evolving with 
respect to time. There are often time periods where important variables such as RPV pressure only change 
by about 1-10% over the course of several hours. Hence it is reasonable to presume that a quasi-steady 
form of the RCIC equation may be used to gradually ‘steer’ the transient thermal-hydraulic calculation. 
This neglects turbine-pump inertia and forces the RCIC to make instantaneous changes between quasi-
equilibrium conditions every time the RCIC inputs (i.e. the momentum and mass fluxes) are updated by 
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the thermal-hydraulic code; the frequency of the input updating is the coupling time step, which is 
currently set to be every thermal-hydraulic time step in this work.  
 
The time derivative in Equation 8 is zero for the quasi-steady scheme. Therefore the angular momentum 
equation reduces to: 
 

   (9) 
 
The instantaneous power developed by the pump is equal to the product of pump torque and angular 
speed; pump power is also equal to the product of the head ( ) and volumetric flow rate ( ) of the pump. 
Equation 10 can then be used to relate the pump torque to the pump head. 
 

Power      (10) 
 
The pump torque relationship from Equation 9 can be inserted into Equation 10 and then solved for the 
pump head. This formula pump head can implemented directly as input for common system thermal-
hydraulic codes such as MELCOR. 
 
Upon implementing the pump head formula into a MELCOR model, the relationship is expanded to 
consider the flow of two phases. The effects of steam and water jetting from the turbine drive nozzles and 
impinging on the turbine wheel are assumed to be fully distinct and additive in that separate mass flow 
rate and velocity terms are included for each of the phases in Equation 9. In reality there may be 
important joint influences. Flashing of the liquid and/or condensation of the vapor may be important. 
MELCOR’s flashing model is employed at the nozzles to capture first order deleterious effects of liquid 
flashing as it exits the nozzles, but this is an area where CFD investigations are expected to contribute 
important realism.  
 
The pump head formula for two-phase flow that is incorporated into the MELCOR test problem in 
Section 4 is given by Equation 11, where  subscripts denote vapor flow and  subscripts denote liquid 
flow. 

  (11) 
 
Equation 11 introduces a parameter  for the pump efficiency, which is generally a function of both the 
pump speed and the volumetric flow rate ( ) developed by the pump. This term is evaluated using 
common relationships for centrifugal pumps. Upon implementation into MELCOR, Equation 11 is 
updated every MELCOR time step. In Equation 11,  and  are true constants, while the fluid velocities 
and mass flow rates are calculated by the thermal-hydraulic code, as is the pump volumetric flow rate. 
Because a differential equation is not being solved for the turbine speed,  must be updated after 
evaluation of Equation 11. Likewise, the current time step solution of Equation 11 uses an ‘old’ value 
for . Turbine speed is calculated according to Equation 12, where and  are model input 
parameters for the rated pump speed and pump head. 
 

     (12) 

 
3.3.  Time-dependent differential equation scheme 
 
The quasi-steady approach in Section 3.2 neglects the inertia of the turbine-pump. Even though LWR 
severe accidents generally evolve slowly with time, there are likely certain time periods that would 
benefit from the use of a differential equation for turbine speed. For instance, the unit 2 accident sequence 
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exhibits several time periods where the effects of turbine-pump inertia may be important; these include 
RCIC startup (near 1 hour after scram), the onset of two-phase flow into the RCIC (unknown timing), the 
pump suction switch from the CST to the WW (near 13 hours), and eventual system failure near 68 hours 
after reactor shutdown [1]. 
 
Equation 8 can be written as: 
 

   (13) 
 
The time derivative term from Equation 8 has been replaced with , where  is the turbine 
moment of inertia. Appendix B shows the derivation of this term. Equation 13 can be rearranged as: 
 

    (14) 
 
Equation 14 is a first-order differential equation for turbine speed. If the pump torque was a known 
function and the coefficients were constants or functions of time only, then this equation would be readily 
solvable by Laplace transformation. Since this is not the case, a constitutive relationship is necessary to 
solve the equation. Centrifugal pump torque is proportional to the pump speed squared. Therefore the 
pump torque can be expressed as: 
 

     (15) 
 
In Equation 15,  is an efficiency term that is currently treated as the same pump efficiency defined for 
the pump head in Equation 11. In general, these two efficiencies may not be identical, but this assumption 
is deemed sufficient for this scoping study.  and  are the rated pump torque and speed, respectively. 
After putting Equation 15 into Equation 14, the final differential equation for turbine speed becomes: 
 

   (16) 
 
It is noted that the same differential equation for turbine speed could be derived directly from the cross 
product of Newton’s Second Law (i.e. ). This is consistent with the fact that the angular 
momentum equation is obtained from the cross product of the linear momentum equation, which is also a 
statement of Newton’s Second Law.  The familiar formula is . The evaluation of this equation 
simply requires careful consideration of the appropriate signs and angles for the various terms that 
comprise , the summation of moments acting on the turbine. 
 
The only true constants in Equation 16 are , , and . The other terms are generally functions of several 
other variables. If these terms were constant or simply functions of time, Equation 16 would be a Riccati 
equation and an analytical solution might be possible. However, a simple time-discretization scheme is 
sought for the scoping calculations that can be advanced each time step in unison with a thermal-
hydraulic code. The simplest coupling method between the RCIC equation and the thermal-hydraulic 
code is an explicit scheme where , , and  are assumed to be constant between each coupling time 
step. Thus the equation can be advanced/integrated quite simply over each time step; this simplistic 
method is deemed adequate for the current scoping analyses and it will be improved in future work.  
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An example numerical solution is given here by assuming that , , and  can be treated as pseudo-
constants over each integration step–these terms are updated each time step by MELCOR for the test 
calculations in Section 4. A simple backward (implicit) Euler scheme is derived by the following time-
discretization of Equation 16, where  is the MELCOR time step size (alternatively it could be a 
coupling time step): 
   

   (17) 
 
Equation 17 is a quadratic equation for , the new time step value of the turbine speed. Given the 
simplicity of this equation and the fact that it only models a single computational node, Equation 17 can 
be solved directly by the quadratic formula.  
 
The implicit Euler solution for  is given by Equation 18 and it depends on the previous time step 
value for turbine speed, . Hence for n = 1,  is the known initial condition and taken to be zero. The 
negative solution to the quadratic equation is neglected because it would yield negative turbine speeds, 
and this analysis only considers turbine motion in the positive direction. 
 

  (18) 

 
The mass flow rate and momentum flux terms in Equation 18 have been expanded to include distinct 
terms for the liquid (subscript ) and vapor (subscript ) phases, as was done in the quasi-steady scheme 
(see Equation 11). For the differential equation scheme, the pump head quantity that couples to MELCOR 
is determined using Equation 12 in conjunction with the turbine speed from Equation 18. The angle ratio 
from Equation 18 is replaced by the constant variable  for brevity. 
 
4. TEST CALCULATIONS 
 
The RCIC governing equations are tested in a simplified MELCOR model of a generic 2000 MWt BWR. 
MELCOR is used to simulate the thermal-hydraulic behaviors of the RPV and the two-phase flow 
through the RCIC steam piping. Because the RCIC turbine discharges steam to the wetwell, which is at a 
much lower pressure than the RPV, MELCOR must also model two-phase choked flow (as appropriate) 
at the turbine nozzles and the governor valve. The turbine dynamics are resolved using control functions 
(i.e. user-formulas that the code calculates each time step) containing the equations from Section 3. In this 
test model the turbine discharge flow to the wetwell is not modeled (although it could be), and hence the 
wetwell pressure must be imposed as a boundary condition. The wetwell pressure is most important in 
determining the wetwell pool temperature if CST-WW switchover is assumed to occur. If the wetwell 
pressure is known, the pool temperature can be resolved if saturated conditions are also assumed.  
 
4.1.  MELCOR Nodalization and RCIC Model Inputs 
 
The MELCOR model has a basic nodalization of the RPV and RCIC piping. The model has seven active 
control volumes: The RPV is a single control volume; two volumes are between the RPV and the 
governor valve for the RCIC steam piping; one volume is between the governor valve and the nozzles to 
represent the RCIC steam chest, which is actually inside the turbine casing; and three volumes are used to 
model the pump and its piping. The main steam lines are not represented, and the steam piping from the 
RPV to the turbine is at a constant elevation. The RCIC turbine is a time-independent volume that sees 
the wetwell pressure. These model simplifications are chosen intentionally in order to expedite the testing 
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of the RCIC equations and to demonstrate that the model can predict key features of the Fukushima unit 2 
accident–a crucial goal in this process is the demonstration of physically reasonable feedback between the 
RPV and the RCIC under SBO-conditions comparable to Fukushima unit 2, i.e., where the RCIC overfills 
the RPV and a two-phase mixture spills over into the steam piping leading to the RCIC. A schematic of 
the RPV-RCIC coupling and feedback is given by Figure 2.  
 

 
Figure 2. Coupling to be demonstrated by the MELCOR test model. 

 
A summary of the main inputs and boundary conditions employed in the test calculations is given by 
Table I. The Fukushima test calculations use plant data of containment pressure in order to grossly model 
the CST-WW switchover. The temperature of the wetwell pool is likely considerably higher than the CST 
temperature, and this has strong impacts on the RPV thermal-hydraulic response after the switch in pump 
suction. MELCOR inherently treats the nozzles as converging nozzles that yield choked flow at the 
throats. In reality the nozzles appear to be of converging-diverging design that could involve supersonic 
flow near design conditions. The calculations in Section 4.2 predict choked flow at the turbine nozzles 
and assume that fluid enters the turbine buckets with velocities predicted by MELCOR’s models for two-
phase critical flow. MELCOR also considers liquid flashing through the nozzles in this process.  
 

Table I. Input values for test calculations 
 

Input variable Value 
Turbine radius (r) 0.3 m (12”) 

Nozzle inlet/outlet angle (α=β, see App. A) π/4 radians 
Nozzle width (square nozzle assumed) 0.01 m (0.39”) 

Number of nozzles 5 
Turbine momentum of inertia (I) 10 kg m2 (237 lb ft2) 

Rated RCIC speed (ωrated, ωo) 4300 rpm 
Rated pump head (hrated) 7.52 MPa (1090 psi) 
Rated pump torque (To) 449 N m (331 lb ft) 

Pump injection flow area 0.0168 m2 (0.18 ft2) 
CST-WW suction switch 14 hours 

WW pool temperature at switch 387 K 

Gov. valve

RCIC nozzles

Terry turbine 
buckets

Shaft
Pump

3) RCIC governing equations

Flow from RPV:
Saturated 2-phase 
mixture at pressure P.
Mixture has dynamic 
properties χ, α, ρliq, ρvap

RPV

2) Choked flow: two 
phase sonic velocity 
model for water-steam

1) Models for RPV thermal-
hydraulics: simple equations, 
MELCOR, or RELAP

Main inputs for RCIC 
equations: ρv2 for both phases

Pump liquid flow to RPV via ΔPRCIC:
RCIC pump head determined by RCIC governing equations; this determines 
the water injection rate into the RPV, which has subsequent effects on RPV 
pressure and two-phase mixture properties (resolved by the RPV TH model) 
that are delivered to the governor valve and RCIC nozzles. The RCIC pumps 
water at either the temperature of the CST or the wetwell.

ωturbine = ωpump
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4.2.  Test Results for Fukushima-type Accident Scenario 
 
The MELCOR model and RCIC equations are tested using an accident scenario that is comparable to 
Fukushima unit 2. No ‘tuning’ or rigorous benchmarking against data is attempted here. There are still too 
many unknown and uncertain model parameters (e.g. bucket angles and velocity coefficients) for such an 
effort to be meaningful. Moreover, the available plant data is very sparse. The test calculations are instead 
deliberately performed for a non-Fukushima model to demonstrate that the models have not just been 
forced to agree with the Fukushima data. For example, the model has an arbitrary power level of 2000 
MW and boiler properties from SNL’s Peach Bottom SOARCA model [1], including relatively high 
safety relief valve (SRV) setpoints (Peach Bottom is a larger 3500 MW reactor). 
 
The test calculation is an extended station blackout where reactor scram occurs at t = 0. The only credited 
safety systems are RCIC and the automatic SRV operation. After t = 1 hour, the RCIC is allowed to run 
uninhibited by any controllers (i.e. no operator throttling or automated trips); its behavior is resolved 
entirely from the RCIC equations from Section 3 and the MELCOR thermal-hydraulic calculations. The 
calculation assumes that the governor valve is opened fully at 1 hour and all water injection by the RCIC 
pump flows to the RPV–no water is diverted back to the CST or wetwell. The RCIC pump initially takes 
suction from the CST, which has a water temperature of about 289 K, and switchover to the WW is 
assumed to occur at 14 hours in the test calculations. At this time, the WW pool water is assumed to have 
a temperature of 387 K. Thus the switchover manifests itself as a sudden and large increase in the water 
temperature that is injected into the RPV by the RCIC. 
 
Figure 3 shows RPV pressures calculated by the MELCOR/RCIC model compared to the plant data for 
Fukushima unit 2. The models are predicting key features of the RPV pressure trend that are in 
reasonable, qualitative agreement with the plant data, despite the simple nature of the MELCOR model 
and the deliberate modeling of a non-Fukushima reactor. The first drop in RPV pressure in the models 
from 2-4 hours is the result of the RPV filling rapidly due to full RCIC operation, which is more than 
capable of handling the decay heat and refilling the vessel especially with the governor valve fully opened 
and no recirculation of injection water. RPV overfill is typically prevented either by operator throttling 
(e.g. recirculation of water back to the CST or wetwell via the test and recirculation lines) or by automatic 
high-level detection that trips the RCIC, neither of which are included in the Fukushima test calculations. 
During the first hour of the unit 2 accident, the RCIC was started and stopped at least two times, possibly 
due to high level and manual restarts, and the operators may have throttled injection before they lost all 
power due to the tsunami. The operators had restarted RCIC just before the tsunami arrived, after which 
they lost control of it and it appears to have run until at least 66 hours after scram. The calculations 
corroborate the notion that the system may have operated in a self-regulating fashion for most of this time 
period.   
 
The calculations predict complete RPV flooding to the MSL elevation near 3 hours. After the RPV water 
level reaches the MSL elevation, significant saturated water is ingested by the turbine and void fraction at 
the nozzles decreases (Figure 4), which results in an immediate reduction in RCIC speed (Figure 5) and a 
sharp increase in RPV pressure back to the SRV setpoint. This trend is mainly the result of decreasing 
sonic velocity at the nozzles due to increased liquid content in the two-phase mixture. In general, the 
critical velocity for saturated water and steam (a two-phase, one-component system) decreases with 
increasing liquid fraction as the mixture expands through a nozzle. Thus, the momentum flux that drives 
the turbine (Figure 6) decreases considerably. The increased fluid density of the liquid is not as important 
since momentum flux is proportional to the square of the velocity.  
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Figure 3. RPV pressure for MELCOR/RCIC models and Fukushima plant data. 

 

 
Figure 4. Void fraction into turbine nozzles for MELCOR/RCIC models. 

 
Figure 5. RCIC speed for MELCOR/RCIC models. 
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Figure 6. Momentum flux for MELCOR/RCIC models. 

 
In conjunction with decreasing decay heat, a few hours of SRV cycling and RCIC operation causes the 
steam generation rate in the RPV to decrease enough for pressure to drop below the setpoint near 8 hours. 
RPV pressure continues to decrease until the CST-WW switchover. The sudden injection of hotter water 
from the wetwell (+100 K relative to the CST) drives an increase in steam generation rate in the RPV at 
14 hours. With less subcooling of the injected water, less energy is required to bring the water to the 
saturation temperature and more energy is used for steam generation that drives the increase in RPV 
pressure. Afterwards, the higher RPV pressure increases the steam content of the two-phase mixture at the 
nozzles (Figure 4), thereby accelerating the RCIC (Figure 5 and Figure 6), which suppresses further 
pressure rise. The acceleration of the RCIC injects more water into the RPV, which subsequently repeats 
the feedback process of higher liquid content, degraded momentum flux, reduced RCIC speed, and hence 
reduced injection into the RPV; the system essentially returns to the state it was in before the CST-WW 
switchover. This is a vital demonstration of system feedback between the RPV and RCIC. The Fukushima 
data reveals a comparable trend but the switch in pump suction may have occurred earlier at unit 2.  

 
5. SUMMARY 
 
A mechanistic approach for lumped-parameter modeling of the RCIC has been developed for evaluation 
of RCIC behavior during severe accidents. Preliminary calculations have been performed that show 
promising initial results. The calculations demonstrate that the RCIC models have the capability to predict 
feedback between the RPV and RCIC for severe accidents without operator action. The results provide 
physical evidence that the RCIC may operate in a self-regulated regime for many hours, and this assertion 
agrees with the current state-of-knowledge for Fukushima unit 2.  
 
The initial model results are encouraging but leave room for future development and improvement. The 
accuracy of a lump-parameter model is inherently dependent on the proper definition and quantification 
of several model parameters that require experimental derivation or computational models with higher 
spatial fidelity (i.e. CFD). Therefore, future SNL research entails CFD and experimental efforts to 
complement the system-level models developed in this work. The results from Section 4 also suggest that 
the numerical coupling between the RCS and RCIC has room for improvement. These results used a 
simple (explicit) coupling scheme between the models, since the RCIC equations are merely input into the 
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MELCOR model via control functions. Future efforts will investigate various implicit computational 
schemes in order to enhance model precision. 
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APPENDIX A: Velocity Triangles for Terry Turbine Buckets 
 
A velocity vector analysis of the turbine buckets is necessary to characterize the RCIC system using a 
lumped-parameter approach. The angular momentum equation that determines the RCIC turbine motion 
depends on the tangential component of the outlet velocity; this quantity must be resolved from the nozzle 
jet velocity and the flow angles of the bucket. Figure A.1 depicts velocity triangles for one-way flow 
through an arbitrarily shaped bucket. The solid arrows with bold variable names represent velocity 
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vectors, and the dotted lines represent the scalar components of these vectors. Red lines with ‘1’ 
subscripts are for the inlet flow, and blue lines with ‘2’ subscripts represent the outlet flow. The ‘z’ 
variables represent the axial components of the flow velocities, which are not in the imposed direction of 
the turbine motion. The ‘y’ variables signify horizontal (i.e. tangential, radial) components of the 
velocities, which are in the direction of turbine motion (i.e. the same direction as the bucket velocity). 
Because the bucket is also in motion, the y-components of the velocity have absolute magnitude with 
respect to the coordinate system and relative magnitude (subscript ‘r’) with respect to the bucket velocity. 
Since the bucket width is small compared to the radius of the turbine, the bucket velocity is the same at 
the inlet and outlet. Figure A.2 shows the approximate placement of the relative fluid velocities as they 
enter a preliminary CAD model of the Terry turbine. 
 

 
Figure A.1. General velocity diagram for one-way flow in an arbitrary impulse bucket. 

 
Figure A.2. Orientation of flow velocities for Terry turbine. 

There are a few pertinent relationships that are necessary to resolve the tangential component of the outlet 
velocity (y2 in Figure A.1 and  in Equation 1). These formulas are simple trigonometry expressions 
based on Figure A.1 and statements of the known input conditions for the problem. The formulas for the 
bucket inlet are:  

, the jet velocity magnitude    (A.1) 
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, the bucket velocity magnitude   (A.2) 
, angle between relative inlet/outlet velocities and bucket velocity  (A.3) 

 angle between absolute inlet velocity and bucket velocity  (A.4) 
      (A.5) 
      (A.6) 

   (A.7) 
 
Using the relationship  and the assumption that , Equation A.7 reduces to: 

    (A.8) 

 
The Terry turbine has roughly equivalent inlet ( ) and outlet ( ) bucket angles. Preliminary CAD models 
suggest that this angle may be near 45 degrees (π/4 radians). The assumption that  is reasonable 
considering the magnitude of the  and the fact that the bucket speed is on the same order of magnitude 
of the jet speed at rated conditions. It is also known that the system is designed such that  is always 
larger than the bucket speed ( ); hence  is always greater than zero. 
 
The bucket outlet relationships are: 

      (A.9) 
     (A.10) 
      (A.11) 

 
 is the bucket velocity coefficient. The approximation of  is sufficient for the scoping analyses. 

It is now possible to solve for , the tangential component of the outlet velocity (i.e.  in Equation 1): 
 

    (A.12) 
 

APPENDIX B: Time-derivative in Angular Momentum Equation 
 
This appendix shows that . 
 
First, the integral is expanded: 
 

 

 

 

 
Defining the moment of inertia to be , which is treated as a constant (hence its time 
derivative is zero), it is apparent that: 
 

 

 
Notionally  would represent the moment of inertia of the fluid in the control volume. 
However, in these scoping analyses it is used to represent the total moment of inertia of the turbine and 
the fluid in the buckets.  
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