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ABSTRACT 
 
In a severe accident of a light water reactor, ablation of the reactor pressure vessel (RPV) lower head by 
corium is a key phenomenon, which affects progression of the accident. The Moving Particle Semi-
implicit (MPS) method is one of particle methods that calculate behavior of incompressible fluid by 
semi-implicit method. In preceding studies, MPS models have been developed to analyze phenomena 
such as heat conduction, phase change, natural convection, thermal stratification, and radiation heat 
transfer. These phenomena are expected to play key roles in the lower head ablation. This paper aims to 
investigate whether the MPS method is capable of analyzing the lower head ablation phenomenon, which 
involves complex interactions of the above mentioned phenomena. The small-scale experiment carried 
out at Central Research Institute of Electric Power Industry (CRIEPI) using Pb-Bi vessel and silicone oil 
was analyzed. The heat transfer model was modified for evaluation of heat transfer between the vessel 
and the oil. The results were compared both qualitatively and quantitatively with the experiment. The 
former is the comparison of the simulation and experiment regarding phenomena that the liquid ablates 
the metal vessel and discharges through the vessel wall, which showed good agreement. The latter are 
comparisons of the calculated liquid temperature, ablation start time and discharge start time with respect 
to the corresponding measurements. The analyses have shown that the MPS method is capable of 
analyzing ablation phenomenon qualitatively, but needs further development for quantitative prediction, 
including investigations on influence of the particle size used in the simulation.  
 
 

KEYWORDS 
severe accident, ablation, particle method, the MPS method, stratification 

 
 
1. INTRODUCTION 
 
In a severe accident of a light water reactor (LWR), the core may melt down and drop to the bottom of a 
reactor pressure vessel (RPV). Due to decay heat of the molten core materials (corium) and debris, the 
RPV lower head may suffer intensive thermal attack, which may ablate the vessel wall [1]. Consequently, 
thinning of the vessel wall and other structural materials may lead to failure of the vessel. Ablation of the 
vessel wall is also a key phenomenon, which determines validity of In-Vessel Retention (IVR) of corium 
[2]. Hence, accurate modeling and prediction of ablation is essential for understanding severe accident 
progression as well as for development of IVR concepts. However, despite its importance, there is limited 
experimental knowledge about RPV lower head failures, because such experiments are highly expensive 
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and also difficult to conduct. Moreover, these experiments often focused on creep rupture of the vessel 
under high pressure as they were mainly intended for severe accidents of Pressurized Water Reactors 
(PWRs) [3, 4]. In Boiling Water Reactor (BWR) severe accidents, ablation of the RPV lower head may be 
more important as the reactor system is designed to depressurize at the early stage of an accident. 
 
Different severe accident codes have been developed and used to predict failures of RPVs in the 
Fukushima Daiichi Nuclear Power Plant Accident (March 2011). However, there seems to be large 
uncertainties among different codes (e.g., MELCOR, MAAP, SAMPSON) in predictions of RPV lower 
head failures [5-7]. In these system analysis codes, where phenomena associated with lower head failure 
are poorly understood, such as penetration failure, the models are very simple and parametric. Moreover, 
the lower head nodalizations are often simple and cannot simulate stratification of corium accurately and 
hence, cannot simulate accurate heat flux distribution from corium to the vessel wall accurately, which 
leads to inaccurate prediction of the vessel wall ablation [8]. Adoptions of simple models and 
correlations in these codes arise from the nature of Eulerian methods, in which liquid flow and pressure 
need to be calculated for each calculation mesh.  
 
In contrast, Lagrangian methods are much more suitable for simulations of the complex phenomena at the 
lower head, because flow and pressure of liquid can be modeled by motion and interactions of the 
calculated points (particles), which enable accurate simulation of convection, stratification, phase change 
and heat transfer based on physical models (rather than empirical correlations). Accurate modeling of 
these phenomena based on physical models is important for analyzing the lower head ablation accurately. 
 
Moving Particle Semi-implicit (MPS) method is one of the particle methods for incompressible flow and 
is based on a Lagrangian method [9]. The MPS method has been extensively studied and developed for 
simulations of different phenomena involved in severe accident of nuclear reactors [10-12]. Through 
these studies, it has been shown that MPS is capable of accurately analyzing phase changes 
(solidification, melting, and ablation of metals), convection, stratification, and heat transfer [13, 14]. It 
can be expected that based on these validated models, MPS will be able to accurately analyze ablation of 
RPV lower head for simulation of severe accidents. The aim of this study is to investigate whether the 
MPS method is capable of analyzing the lower head ablation phenomenon, which involves complex 
interactions of the above mentioned phenomena. 
 
For the validation purpose of the MPS method, a small-scale experiment was carried out at Central 
Research Institute of Electric Power Industry (CRIEPI) using Pb-Bi as a vessel and silicone oil as the 
confined liquid which ablates the vessel wall [15]. Since the MPS method does not rely on empirical 
correlations which are dependent on geometrical scale and the models are developed based on physical 
models rather than empirical models, it is expected that simulation of the small-scale experiment will 
provide valuable information regarding validity of the models and identify areas where further study and 
development may be necessary to analyze RPV lower head ablation. 
 
2. CALCULATION METHOD 
 
2.1. MPS Method 
 
The MPS method is one of particle methods that calculate behavior of incompressible fluid by semi-
implicit method. The term “semi-implicit” method indicates that viscosity and gravity are calculated by 
explicit method while pressure is calculated by implicit method. Particle method is based on Lagrangian 
method and expresses continua like fluid by particles. It is suitable for analysis of fluid flow involving 
phase changes and large deformations, because it is capable of accurately analyzing motions of free 
surfaces by tracking motions and interactions of the particles. In contrast, Eulerian method exhibits some 
difficulties with simulating such phenomena. For example, Finite Element Methods (FEM) have 
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difficulties with large distortions of meshes and Volume Of Fluid (VOF) methods tend to encounter 
numerical divergence at the boundary of free surface when simulating large deformation of free surface. 
 
The MPS method used in this study is based on MPS-SW-MAIN-Ver2.0 developed by Koshizuka, 
Shibata [9]. Governing equations are mass, momentum, energy conservations as follows, respectively. 
 

 (1) 

 

 (2) 

 

 (3) 

 
where  is density, u is velocity, P is pressure,  is kinematic viscosity, g is gravitational acceleration, h is 
enthalpy, k is thermal conductivity, Q is heat source. 
 
In the MPS method, particle interaction models that express differential operators such as gradient, 
divergence and Laplacian are used for discretizing differential equations. These models are applied for 
neighboring particles by the weight function as  
 

 (4) 

 
where r is distance between particles, re is radius of influence that determines neighboring particles. 
Particle interactions occur when r is smaller than  re.  
 
The particle number density is expressed as summation of weight functions 
 

 (5) 

 
The MPS method is applied to incompressible fluid so that the particle number density is kept constant at 
the initial value (n0) throughout the analysis. 
 
The gradient, divergence and Laplacian operators in the governing equations are expressed with the 
particle interaction model as follows, respectively  
 

 (6) 

 

 (7) 

 

 (8) 
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where d is number of dimension in the analysis and  is the parameter that fit increase of statistical 
dispersion with analytical solution. 
 
2.2.  Heat Transfer, Convection and Phase Change Models 
 
In the MPS method, when heat transfer between two different materials is calculated, thermal 
conductivity is expressed by a harmonic average of each one [10, 16] as shown in Eq. 9  
 

 (9) 

 
where ki and kj are thermal conductivities of material i and j, respectively. However in case of two 
different materials whose physical properties are quite different like this study, this average model may 
underestimate thermal conductivity. Hence, in this study, following arithmetic mean model is proposed to 
model a sharp change in thermal conductivity from one material to the other  
 

( ) (10) 

 
where Ti and Tj are temperature of material i and j, respectively. 
 
Radiation heat transfer is expressed by Stefan-Boltzmann’s law as follows [16]  
 

 (11) 
 
where q is heat flux,  is emissivity,  is Stefan-Boltzmann constant. It is applied to a surface of liquid 
and the vessel wall. 
 
Buoyancy by temperature difference is expressed by Boussinesq approximation as follows [16] 
 

 (12) 

 
where  is coefficient of thermal expansion. Natural convection is reproduced by this approximation in 
the analysis. 
 
Phase change is considered between solid phase and liquid phase. It depends on enthalpy of each particle. 
When enthalpy of a solid particle is larger than certain value, that particle becomes a liquid one and will 
be able to move according to the basic governing equations described in Section 2.1. On the other hand, 
when enthalpy of a liquid particle is smaller than certain value, that particle becomes a solid one [10, 16]. 
Therefore, temperature of particles is determined as follows, 
 

 (13) 
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where Tm is melting point, h0 and h1 are enthalpies at melting start and end points, respectively. Cs and Cl 
are specific heat of solid and liquid state, respectively. 
 
3. ANALYSIS OF THE EXPERIMENT  
 
3.1. Experimental Conditions 
 
As is explained in Chapter 1, the purpose of this study is to validate MPS method against an experiment, 
which captures the governing phenomena involved in ablation of RPV of a nuclear reactor, such as 
convection, stratification, phase change and heat transfer. As described in Chapter 2, the MPS models 
corresponding to these phenomena do not rely on empirical correlations and do not depend on scale of the 
calculation domain. These models are also independent of the materials. In another word, the same model 
can be used while differences due to material properties can be incorporated by replacing the relevant 
material parameters (e.g., thermal conductivity, thermal expansion coefficient, specific heat capacity).  
 
Hence, a small-scale experiment, in which high temperature silicone oil was filled into the hemispherical 
vessel of Pb-Bi was conducted by Central Research Institute of Electric Power Industry (CRIEPI). Figure 
1 shows the cross-sectional view of the hemispherical vessel of Pb-Bi and Table I. shows the 
experimental condition.  
 
 

 
Figure 1.  Cross-sectional schematic of the hemispherical vessel 

 
 

Table I. Experimental conditions 
 

Liquid Silicone oil 
Initial temperature [ ] 300 
Kinematic viscosity coefficient [ ] 200 (at ) 
Ambient temperature [ ] 26 
Filled mass of silicone Oil [g] 80.7 
Filled time [s] 1.63 
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The characteristic of the experiment is as follows: (1) At the beginning of the experiment, silicone oil with 
initial temperature of 300  was filled into the vessel with ambient temperature of 26  from the top of 
the vessel. Filling of the vessel with the entire silicone oil of 80.7 g was completed in 1.63 s. In the 
meantime, some of the oil was discharged from the bottom hole. (2) The internal vessel wall of Pb-Bi was 
ablated by silicone oil and molten Pb-Bi was relocated to the vessel bottom, where it was discharged from 
the hole together with silicone oil. (3) In the middle of the experiment, the hole at the vessel bottom was 
clogged by solidified Pb-Bi. (4) Then discharge of silicone oil was stopped and ablation of the vessel wall 
proceeded rapidly. (5) Finally, liquid in the vessel was discharged by penetrating the sidewall whose 
location was a little lower than liquid surface level. 
 
Although the scale and materials used in the above experiment are different from those of RPV ablation 
by corium in a severe accident, it is expected that the experiment captures the governing phenomena 
(convection, stratification, phase change and heat transfer) and provides key information needed to 
investigate capability of MPS method for the analysis.  
 
3.2. Analysis Conditions 
 
Figure 2 shows calculation geometry of the MPS simulation. Table II. shows the calculation parameters. 
In the analysis, the hole at the vessel bottom is neglected, because the hole at the vessel bottom is clogged 
by solidified Pb-Bi in the middle of the experiment. In addition, silicone oil was in the vessel beforehand 
in the analysis, whereas it was poured into the vessel and it took 1.6 s in the experiment.  The current 
MPS simulation was focused on vessel ablation by silicone oil after it was filled into the vessel. 
Investigations on effects of poring and discharge of silicone oil will be for future studies. 
 
 

 
Figure 2.  Calculation geometry of the MPS. 

 
 

Table II. Calculation parameters 
 

Material Pb-Bi Silicone oil 
Density [kg/ ] 10050.0 969.0 

Specific heat [J/( )] 147 1510-1680 
(Temperature dependent) 

Thermal conductivity [W/( )] 13.8 0.16 

Kinematic viscosity coefficient [ /s]   at  
(Temperature dependent) 

Initial temperature [ ] 26 300 
Melting temperature [ ] 123.85 - 
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According to Table I. , the experiment was conducted at room temperature, so heat removal by the air was 
considered in the analysis. The empirical formulas about natural convection heat transfer of a hemisphere 
and a plate are used [17] to model heat removal by the air. The empirical formula of a hemisphere is used 
for outer surface of the vessel and that of plate is used for top surface of liquid in the vessel. These are 
expressed by Nusselt number (Nu) as follows. 
 
For outer surface of the vessel, 
 

 (14) 
 
where 
 

  

 
For top surface of silicone oil, 
 

 (15) 
 
where 
 

  
 
where Pr is Prandtl number of the air and Ra is Rayleigh number of the air. Then, Nu is expressed as 
follows. 
 

 (16) 

 
where 
 

  
 
where d is the diameter of the hemisphere, k is thermal conductivity of the air, h is heat transfer 
coefficient of the air. According to equations (14)- (16), h is obtained. Then Newton’s law of cooling is 
expressed as follows. 
 

 (17) 
 
where q is heat flux,  is the surface temperature,  is the external temperature. Hence, q is the amount 
of heat removal by the air. 
 
In analysis of the reference case, the particle size of 1.667 mm and the corresponding total particle 
number of 29007 is used. Some results of sensitivity study on the particle size of 2.5 mm (corresponding 
total particle number of 8582) are also presented in Section 3.3. 
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3.3. Results and Discussions 
 
3.3.1. Qualitative discussions with reference case analysis results 
 
Figure 3 shows the cross-sectional view of the liquid discharge from the failed sidewall of the vessel in 
the analysis. As shown in Fig. 3, the ablation initiates at the wall slightly below the top surface of silicone 
oil and molten Pb-Bi relocates to the bottom of the vessel. The ablation continues until the entire wall 
thickness has been ablated at around 74.1 s and silicone oil is discharged from the so called “fish mouth” 
of the failed wall. Figure 4 shows side view of liquid discharge from the failed sidewall of the vessel in 
the experiment at 70 s. The two arrows indicate the failed regions (the red arrow pointing at the leakage 
from the fish mouth-like hole and the blue arrow pointing at the small leakage) in Fig. 4. The analysis 
well reproduced the liquid discharged from the fish mouth-like hole (ablated side wall). Predicted position 
of the failure also agrees with the experiment qualitatively. However, the small leakage observed in the 
experiment (indicated by the blue arrow in Fig. 4), was not reproduced. 
 
 

 
Figure 3.  Cross-sectional view of the liquid discharge from the failed sidewall of the vessel in the 

analysis. 
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Figure 4.  Side view of the liquid discharge from the failed sidewall of the vessel in the experiment 

(70[s]). 
 
 
Figure 5 shows temperature distribution of liquid in the vessel in the analysis. Initially, heat of the silicone 
oil at the boundaries was transferred to the vessel wall and the air. As time proceeded, convection of the 
silicone oil particles was induced due to the temperature distribution. As the result, the temperature 
distribution of the silicone oil was stratified and the layer of high temperature was formed on the upper 
part of the vessel.  The stratified temperature distribution was also influenced by the convection after the 
Pb-Bi wall particles started to melt and relocate to the bottom of the vessel by density difference. It is 
considered that this temperature stratification phenomenon and heat concentration in the upper part of the 
vessel were responsible for liquid discharge from the vessel side wall whose location was a little lower 
than liquid surface level. 
 
 

 
Figure 5.  Temperature distribution of the liquid in the vessel in the analysis. 
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Figure 6 shows top view of the ablation of the Pb-Bi vessel in the analysis. In Fig. 6, the particles 
representing silicone oil are not depicted to better show ablation of the vessel. As explained earlier, 
ablation initiates at the upper part of the vessel and molten Pb-Bi relocates to the bottom of the vessel. 
Figure 7 shows the picture of vessel wall ablation in the experiment. Since silicone oil is transparent, 
relocation of molten Pb-Bi could be visually observed. The arrow in Fig. 7 indicates ablation start point. 
In the experiment, ablation was also initiated in the upper part of the vessel and molten Pb-Bi was 
relocated and accumulated at the vessel bottom.  
 
 

 
Figure 6.  Top view of the ablation of the Pb-Bi vessel in the analysis. 

 
 

  
25 [s] 60 [s] 

Figure 7.  Picture of vessel wall ablation in the experiment. 
 
 
As for these qualitative comparisons, the analysis results of the MPS method well reproduced the 
experimental results. Noticeably, it can be seen for both the experiment and simulation that locations of 
generation of the molten Pb-Bi droplets are distributed unsymmetrically. It is considered that these 
asymmetries arise from imperfection of the vessel for both the experiment and simulation. In the 
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experiment, there is always some asymmetry due to imperfection in manufacturing of the vessel and 
alignment of the experiment. Similarly, in the MPS simulation, the calculation geometry of the MPS 
method is not perfectly symmetrical. The particle arrangement of the vessel wall is not uniform. This is 
expected to be the reason for the unsymmetrical results in the analysis.  
 
3.3.2. Quantitative discussions and sensitivity analyses 
 
In the previous section, the reference analysis results were compared with the experimental results 
qualitatively. In this section, some quantitative comparisons are made with addition of sensitivity analysis 
results using larger calculation particle size of 2.5 mm (c.f., particle size of the reference case is 1.667 
mm). Particle size in MPS method indicates resolution of discretization of the simulation and should be 
small enough to capture governing phenomena of the interest. On the other hand, smaller particle size 
leads to larger number of particles required to cover the calculation domain, which increases calculation 
cost. It should be noted that there was no qualitative difference in the analytical results by changing the 
particle size. However, significant differences were identified quantitatively as described in the 
followings. 
 
Table III. shows comparison of the start time of vessel wall ablation and liquid discharge from the vessel 
between the analysis and the experiment. In the experiment, start time of vessel wall ablation (18.5 s) is 
defined when the first Pb-Bi liquid droplet is visually observed. In contrast, the corresponding start time 
in the simulation is when the first Pb-Bi wall particle is molten to liquid Pb-Bi particle. As described in 
Section 2.2, a wall particle turns to a liquid particle when enthalpy of the particle exceeds the melting 
point. The predicted start time of the vessel wall ablation with particle size of 1.667 mm is much earlier 
than that with 2.5 mm. It is because enthalpy needed for ablation of one Pb-Bi particle decreases as 
particle size is reduced. The MPS result with smaller particle size of 1.667 mm (10.6 s) indicates that 
MPS prediction is earlier than the experimentally observed start time (18.5 s) of the vessel wall ablation. 
However, it should be noted that in the experiment, some small ablation may have occurred earlier than 
the recorded time of 18.5 s, but may have not been noticed by visual observation. Hence, there may be 
large uncertainty regarding the experimentally determined start time of ablation. It may be for a future 
study to consider other ways of comparisons because the start time of vessel wall ablation depends on the 
particle size. For example, comparison of certain area of wall ablation may be considered. 
 
Table III. also shows comparison of start time of discharge of the liquid from the vessel from the fish 
mouth of the failed vessel wall. Reduction in predicted discharge time with smaller particle size indicates 
that more investigation may be necessary regarding heat conduction and phase change models of MPS 
with sensitivity studies on the particle size. The MPS result with smaller particle size of 1.667 mm (52.4 
s) indicates that MPS prediction is earlier than the experimentally observed start time (68.6 s) of the 
discharge.  
 
Figure 8 shows the comparison of liquid temperature at the vessel bottom between the analysis and the 
experiment. The “Experiment” indicates the temperature measured by a thermocouple, which was 
attached at the bottom inner surface of the vessel wall. In contrast, the calculated temperatures are the 
average temperatures of liquid particles at the bottom of the vessel, corresponding to location of the 
thermocouple.  
 
The analysis with particle size of 2.5 mm over-predicts the measured liquid temperature through the entire 
duration, while that with particle size of 1.667 mm agrees well with the measurements after around 30 s. 
However, both analytical results are a little higher than the measurements up to around 30 s. As described 
in Section 3.2, there are some differences between the experimental and analytical conditions, which may 
be responsible for the difference in the early phase. In the simulation, pouring of silicone oil at the 
beginning and discharge of silicone oil until the hole was clogged at 32.6 s were neglected. These 
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differences may have led to the over-predictions, because loss of enthalpy of silicone oil to the air (during 
pouring) and by discharge through the hole is not considered in the analysis. 
 
In the analysis with particle size of 1.667 mm, there is a sharp increase in the calculated temperature at 
around 11 s, which coincides with start time of the vessel wall ablation (10.6 s). At this time, the 
simulation indicates promoted downward flow of high temperature silicone oil from the top surface by 
relocation of molten Pb-Bi particle. Similar phenomenon was also observed for the case with 2.5 mm 
particle size at around 25 s. However, such increase of the temperature is not found in the experiment. 
More quantitative investigations may be necessary to identify the responsible mechanisms.  
 
 
Table III. Comparison of the start time of vessel wall ablation and liquid discharge from the vessel 

between the analysis and the experiment 
 

Start time Experiment MPS analysis 
(Particle size:2.5mm) 

MPS analysis 
(Particle size:1.667mm) 

Vessel wall ablation 
[s] 18.5 24.0 10.6 

Discharge from the 
vessel [s] 68.6 74.1 52.4 

 
 

 
Figure 8.  Comparison of liquid temperature at the vessel bottom between the analysis and the 

experiment. 
 
 
4. CONCLUSION  
 
In the scope of validating MPS method for predicting ablation of RPV in severe accident of a nuclear 
reactor, the Pb-Bi ablation experiment was simulated with the MPS method. The MPS method 
incorporating phase changes (solidification, melting, and ablation of metals), convection, stratification, 
and heat transfer models well predicted the experiment qualitatively with respect to location of the vessel 
wall failure. However, some quantitative discrepancies have been identified with respect to temperature of 
the confined liquid and time of the vessel failure. The results indicated that more investigations are 
necessary with respect to the above mentioned models as well as influence of the particle size. 
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