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ABSTRACT 
 
A control theory approach is adopted to determine the temporal discretization of exchanging data during 
coupled computational fluid dynamics (CFD) and CRUD chemistry/deposition simulations. The benefit 
of automated and adaptive stepsize control is realized in high-fidelity multiphysics simulations where the 
physics are nonlinear in time and stepsize changes may be necessary to ensure a converged coupled 
solution is obtained. A conventional predictor-corrector method is used to address the nonlinearity of the 
coupled problem, including the feedbacks between the cladding temperature, heat flux, CRUD deposition, 
and boron precipitation. The strong time-dependency of the boron precipitation is the motivation for 
seeking an adaptive stepsize method. The predictor and corrector solutions obtained are used to 
approximate the residual of the nonlinear solution. A user-specified tolerance on the change in the boron 
mass is set to control the convergence residual of the coupled solution. A proportional-integral controller 
is parameterized and applied to control the temporal data exchange between CRUD deposition and CFD 
solutions during a 500-day cycle simulation. A single three-dimensional fuel pin cell with three spacer 
grids with mixing vanes is used in this study. 
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1. INTRODUCTION 
 
1.1. Background 
 
Modeling the individual physics within a nuclear reactor has been an active area of research for half a 
century. In the last decade, the paradigm has shifted to multiphysics simulations where coupling of the 
(historically) separate physics is performed to improve predictions. Loose coupling refers to exchanging 
data between multiple physics and uses fixed-point iteration (FPI) and/or predictor-corrector (P-C) type 
methods to converge the solution. Tight coupling refers to a monolithic formulation and solution of the 
coupled equations. The work in this paper is aimed at optimizing the temporal discretization of the data 
exchange between loosely coupled physics. Specifically, the high-fidelity simulation of CRUD (Chalk 
River Unidentified Deposit), or corrosion particulate, deposition on the surface of pressurized water 
reactor (PWR) fuel rods is under investigation.  Previous works have introduced the multiphysics 
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framework where the coupling of neutron transport, computational fluid dynamics (CFD), and CRUD 
chemistry is developed [1,2]; initial validation with plant data has also been completed [3]. Additionally, 
other efforts using industry-standard tools have investigated this multiphysics problem—the coupling of 
ANC, VIPRE, and BOA [4,5]. The coupling between VIPRE and ANC featured a two-way data exchange 
interface, which used FPI to converge the nonlinear solution. The three way coupling with BOA was 
completed by a one-way data transfer from VIPRE to BOA and another from BOA to ANC. A time-
consistent solution was eventually obtained by embedding the FPI within a predictor-corrector method. 
 
Because the coupled physics of neutron transport, nuclide depletion, hydraulics, heat transfer, coolant 
chemistry, and CRUD deposition are highly nonlinear, a systematic investigation of the feedback 
mechanisms and solution sensitivities to the coupled time stepsize is necessary. Particularly, the temporal 
coupling of steady state thermal hydraulics, via CFD and time-dependent CRUD deposition is 
investigated for a 500-day operating cycle. First, the 500-day cycle simulation is discretized using several 
fixed time stepsizes, including 50, 25, and 5 days. For each of the fixed stepsize simulations, three 
additional coupled CFD and CRUD chemistry cases are considered: 
 

1. one-way explicit (time-lagged) coupling, where CFD provides the thermal hydraulic boundary 
conditions to the CRUD deposition simulation without feedback, 

2. two-way explicit (time-lagged) coupling, where the CFD and CRUD data are exchanged at the 
beginning of each time step, where feedback through the thermal hydraulics is included, 

3. and, a two-way predictor-corrector (time-consistent) coupling, where two CFD and CRUD 
simulations are run per time step; the step-average of the thermal hydraulic properties is used in 
the second CRUD deposition simulation. 
 

Second, an adaptive stepsize selection algorithm is introduced and applied to the coupled cycle 
simulation. The algorithm is based on control theory and utilizes the predictor and corrector solutions to 
approximate the convergence residual of the coupled CFD and CRUD deposition solutions for a given 
time step. The boron mass within the CRUD deposit, as predicted by the CRUD deposition physics 
solver, is used as the control variable to predict the next time stepsize. 
 
In addition to the lagged and standard predictor-corrector approaches, three other relevant temporal 
coupling schemes are acknowledged but have not yet been investigated in this work: (i) using an average 
(or middle) step value of the CRUD solution to calculate the end of step thermal hydraulic state, (ii) using 
a P-C method with a linear interpolation of the thermal hydraulic state to be used in the corrector 
calculation of the CRUD solution, (iii) and, iterating the two physics until convergence at each time step. 
  
1.2. A Coupled Approach 
 
In this section, simplified forms of the coupled equations are presented to expose the coupling variables. 
Because the high-fidelity prediction of CRUD deposition involves several complex and coupled solution 
methods, a useful form to express the coupled equations is through the use of a specific physics operator 
that transforms its inputs into outputs. The physics of lattice depletion is neglected from this discussion 
because the focus of this paper is on coupled CFD and CRUD deposition simulations; however, the 
feedbacks between the lattice depletion and CRUD deposition physics are important and should be further 
investigated. Figure 1 illustrates the boundary conditions that are exchanged between the CFD and 
CRUD deposition physics solvers. 
 
The CFD with conjugate heat transfer (CHT) physics is represented by two operators:  for the fluid-flow 
and  for the heat transfer. The coupled input to the fluid-dynamics solver includes the cladding heat 
flux , and the outputs are the coolant temperature , coolant density , and turbulent kinetic 
energy near the cladding wall : 
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The inputs to the (CFD) heat transfer solver include the volumetric heat generation rate  within the 
fuel, the coolant temperature, and the CRUD thermal resistance. The outputs are the fuel temperature, 
cladding temperature, and cladding heat flux: 
 

 
 
The CRUD chemistry operator  takes the inputs from the CFD operators and returns the CRUD 
thickness and thermal resistance: 

 
 

 
 

Figure 1. Boundary condition coupling between the physics of CFD and CRUD deposition. 
 

The STAR-CCM+ [6] and MAMBA [7] codes are used for the CFD and CRUD deposition solvers, 
respectively. The 3-D whole-core transport code DeCART [8] is used to provide the intra-pin power 
density distribution to STAR-CCM+ at each time step. 
 
2. THEORY 
 
2.1. CRUD Deposition Physics 
 
Species  that are modeled within MAMBA and are available to deposit within the CRUD layer include 
nickel ferrite ( ), nickel oxide ( ), iron oxide ( ), lithium tetraborate ( ), lithium 
monoborate ( ), bonnacordite ( ), and metaboric acid ( ). 
 
The precipitation of various solid phase compounds is governed by equilibrium thermodynamics and is a 
function of the compound concentration and temperature. The temperature dependence of the equilibrium 
constants, , are typically fit to experimental data using a three-term correlation of the general form 
 

 
 
where , , and  are fitting constant [9]. Ref. 9 details the development of a solubility correlation for 
lithium monoborate, which is implemented within MAMBA with coefficients of  , 
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, and . Similar proprietary correlations are implemented for lithium tetraborate 
and bonnacordite. The lithium tetraborate precipitation reaction is given by 
 

                
 

Because lithium tetraborate is the least soluble and precipitates out of solution first (in comparison to the 
other boron-containing compounds of interest), this particular compound is the dominating solid boron 
phase within the CRUD layer modeled by MAMBA. The dominant soluble boron species is metaboric 
acid, which is added to the coolant within pressurized water reactors to control reactivity. The 
combination of the presence of lithium tetraborate and metaboric acid within CRUD deposits is believed 
to be the strongest contributor to CRUD-induced power shift (CIPS). 
 
The presence of solid boron phases also impacts the CRUD-induced localized corrosion (CILC) condition 
of the plant due to changes in the specific heat capacity and thermal conductivity of the CRUD layer. In 
general, the introduction of solid boron phases within the porous CRUD structure increases the thermal 
resistance, and temperature, of the corrosion deposit. This behavior is attributed to less convective cooling 
because the porous CRUD layer, including chimneys, are filled by the solid boron phases, thus restricting 
the flowing water’s ability to remove heat. However, there is a tradeoff between convective and 
conductive heat transfer as boron phases fill the CRUD pores. The thermal conductivity of the water 
present in the porous structure is lower than that of the solid CRUD/boron mixture, so heat conduction 
will be more efficient as the CRUD layer densifies. 
 
The effective thermal conductivity of the CRUD is calculated as a standard mixing fraction where the 
conductivity of water, , and of CRUD, , are weighted by the CRUD porosity, 
 

 
 
The solid CRUD’s thermal conductivity is fixed at , which was determined based on 
experimental CRUD growth studies at the WALT Loop [10]. Moreover, the CRUD chimney property 
values were previously optimized by fitting the MAMBA-computed CRUD temperature to the WALT 
Loop data. These properties include a chimney radius of , surface density  of , 
and heat transfer coefficient  of .  
 
Similar to the effective thermal conductivity, the specific heat capacity  is also weighted by the CRUD 
porosity as, 
 

 
 
where the bulk density of the CRUD  is fixed at . The water properties are a function of 
pressure and temperature; NIST correlations are utilized. For reference, the thermal conductivity at 
standard operating temperature and pressure is approximately . Whereas, the specific heat 
capacity of the solid CRUD , composed primarily of nickel ferrite (a.k.a. trevorite), is calculated as a 
function of temperature from a correlation developed in Ref. 11.  
 
The time-dependent CRUD porosity  for species  is initialized as 0.7 and is calculated during the cycle 
simulation as 
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where the mass  of species  is calculated as the product of the molecular mass , concentration , 
and volume . The chimney boiling model is a modified Cohen-type model [12,13], where the boiling 
heat flux leaving a given CRUD volume element is expressed as 
 

 
 
The effective bulk chimney heat transfer coefficient is , the effective bulk chimney boiling surface area 
is given by ; the porosity-dependent CRUD permeability is ;  is the local CRUD temperature; 
and,  is the local liquid saturation temperature, which is a function of the local soluble boric acid 
concentration. If the CRUD temperature is less than the saturation temperature then the boiling heat flux 
is set to zero. The boiling heat flux acts as a localized “sink” in the heat transport calculation, thus 
resulting in a decreased thermal resistance across the CRUD deposit. This boiling model has been 
benchmarked against the models used in BOA [14] and successfully validated against WALT Loop 
experiments [10,15]. 
 
3.2.  Temporal Stepsize Control 
 
In this section, relevant aspects of control theory and its application to numerical stepsize control is 
briefly introduced. The works of Söderlind and Gustafsson makeup the majority of the literature on 
control theory applications to automate stepsize control of numerical integration methods. Gustafsson, 
Lundh, and Soderlind originally viewed the stepsize selection in the numerical solution of ordinary 
differential equations (ODE) as an automatic control problem [16]. Subsequently, Gustafsson focused on 
stepsize control techniques for explicit and implicit Runge-Kutta methods [17,18]. Additional works 
expand on the topic and introduce the application of more advanced controllers and digital filters 
[19,20,21,22]. Another summary of numerical integration stepsize control may be found in Ref. 23. 
 
A natural extension of numerical integration stepsize control is the control of the temporal discretization 
of data exchange between coupled physics. Valli and others have utilized proportional-integral-derivative 
(PID) controllers to select the time stepsize of the exchange of data between nonlinear iterations for 
coupled reaction-convection-diffusion and coupled viscous flow / heat transfer problems [24,25]. Stepsize 
control was achieved by monitoring normalized changes in solution variables of interest, such as velocity 
and temperature. More recently, a PI controller was parameterized for lattice physics depletion 
simulations [23]. Other interesting applications of adaptive stepsize control are found in Refs. 26 and 27. 
 
3.2.1. Elementary Error Control 
 
The introduction of stepsize control for numerical integration is best achieved by considering the ODE, 
 

 
 
where the numerical solution at discrete time steps is sought. The stepsize  is used to advance the 
solution of the ODE from one state in time  to the next, , according to a prescribed error 
tolerance, . A popular elementary local error controller is given as 
 

 

 
where  depends on the order of the method and  is the local error estimate [28]. The heuristic 
derivation of this control algorithm is given in Ref. 21; the important aspects are now summarized. 
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Consider the ODE in Equation 10 with a measure for the local error defined as , 
where  is the discrete reference solution, which at the state  has the same value as the 
continuous reference solution, . The local error is assumed to depend on the stepsize 
asymptotically, , where  is the order of the error estimate. Therefore, it is expanded in an 
asymptotic series as , where  is the principal error function at state point  
and is dependent on the ODE solution. The order of the error estimate, , is the largest integer for which 

 for all . Depending on the control objectives, the local error is controlled by either the 
error per step (EPS) with  and , or by the error per unit step (EPUS) with  
and 
 

 

 
The above derivation suggests that the difference between the tolerance, , and error estimate, , will 
be eliminated by the controller in a single step, thus decreasing the local error to the set tolerance. This 
ideal control is dependent on two assumptions. The first assumption is that the local error estimate varies 
asymptotically according to the relation 
 

 
 
The second assumption is that the norm of the principal error function varies slowly, 
 

 
 
In practice, explicit calculation of the principal error function is not required. 
 
3.2.2. Discrete-Time Integral Control 
 
In this subsection, the interaction of the process and controller, known as closed loop dynamics, is 
developed. In the case of stepsize control of numerical integration, the process is the combination of the 
equation being solved and the integration method utilized. The controller is the means by which the error 
estimate and prescribed tolerance is used to control the stepsize.  
 
The elementary error controller, Equation 11, is written as a linear difference (recurrence) equation by 
taking logarithms, 

 
 
The controller’s objective is to seek an equilibrium where the control, , of the current state  does 
not change in the next state . This is achieved by forcing the error estimate, , equal to the 
setpoint, . The solution of Equation 15 is found as the sum of all past control errors, 

 

 
Assuming that the error evolves asymptotically according to Equation 13,  taking the logarithm, 
eliminating the error estimate by combining with Equation 16, and replacing the  factor with the 
integral gain,  , gives  
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The integral gain should be viewed as a design parameter (no longer fixed based on the process) with the 
purpose of affecting the closed loop dynamic behavior. The designer of the controller should determine 
proper gain values that produce good controller behavior. The root of Equation 17 is,  
Söderlind explains that the choice of  is a tradeoff between the controller’s response time and 
sensitivity to changes in . The I controller is given as 
 

 

 
Comparison of the I controller to the elementary controller shows the singular difference is the 
substitution of  for , which results in smoother stepsize predictions, while still obeying the 
asymptotic error model given by Equation 13.The assumption of Equation 14 is no longer required. 
 
Despite the I controller’s smooth stepsize sequence, more advanced controllers may be used to improve 
performance and increase the range of applicability. The proportional-integral controller exhibits the 
benefits of integral control, but modifies the behavior with an additional proportional (P) action 
component. The PI controller includes two terms: (i) proportional to the control error, and (ii) 
proportional to the summation (discrete integral) of the control error. The PI controller may be derived in 
a similar fashion to the I controller; the final result is, 
 

 

 
The additional proportional component accounts for error trends and considers the local error estimate of 
the previous time step. Specifically, a quicker reduction of stepsize is achieved for increasing errors, and a 
quicker increase of stepsize is realized for decreasing errors. As with the I controller, the gains,   and 

, associated with the PI controller should be determined based on the controller’s objective and 
required behavior. Choosing  and  is a compromise between stability and response time.  
 
3. METHOD 

 
4.1.  STAR-CCM+ Model 
 
The fluid-dynamic simulation included conjugate heat transfer for the calculation of the temperature 
distribution in the fuel and cladding domains. A volumetric heat generation source was used in the fuel 
domain. The CFD domain includes the solid structure constituting the fuel pellet and cladding, the water 
domain in the subchannel surrounding the fuel pin, and three spacer grids with mixing vanes as shown in 
Figure 2 (right). Only the spacer grids where the highest fuel and cladding temperatures are expected are 
modeled; the other grids were not modeled to reduce computation time. The spacer grid regions, which 
rest at 203.28 cm, 249.00 cm, and 294.72 cm from the bottom of the active fuel, were discretized using 
polyhedral cells together with three layers of prismatic cells at the wall, as shown in Figure 2 (left). The 
computational mesh upstream and downstream of grid spacers was generated by extrusion, applying the 
hyperbolic tangent law. Approximately 1.6 million cells makeup this model. 
 
The realizable k-ε turbulence model was first considered, but then abandoned due to numerical 
instabilities that persisted in regions away from the spacer grids where flow was predominantly in the 
axial direction. Sensitivity studies using various turbulence models and meshes were previously 
performed [29], and it was concluded that, for the integral parameters of interest, the two-equation RANS 
models give reasonable results. Moreover, according to a recent international benchmark, the k-ε model 
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shows good agreement with experimental data [30].   
 
 
An inlet velocity of 5.278 m/s, inlet temperature of 556.76 K, and constant outlet pressure of 15.5 MPa 
were imposed as boundary conditions. Periodic boundary conditions were imposed on the lateral surfaces 
of the water domain (coolant subchannel). No-slip conditions were imposed on the spacer grids, pin walls 
and on the cladding surface. The coolant density was calculated according to the following third-order 
polynomial:   
 

 
Figure 2. STAR-CCM+ single pin cell with three spacer grids polyhedral mesh model. 

 
4.2.  MAMBA Model 
 
The 3-D CRUD deposition domain consists of a 365.76 cm long cladding surface with a radial mesh that 
grows in time in 5 μm increments as the CRUD deposit thickens. The circumferential, or azimuthal, 
discretization consists of 16 uniform sectors. The axial discretization is non-uniform and consists of 
planes with thicknesses ranging from 0.5 cm in the regions where CRUD deposition is expected to be the 
most aggressive (e.g. the top third of the fuel rod) to 4 cm in the rest of the domain (e.g. the lower two 
thirds).  
 

 
Figure 3. Coolant boron, nickel and lithium concentrations used in the CRUD deposition model. 

 
In addition to the CRUD parameters defined in subsection 3.1, the dissolved boron,  particulate nickel and 
soluble nickel concentrations within the coolant are functions of time as depicted in Figure 3. It is noted 
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that the coolant boron concentration curve predicted by the single pin cell DeCART model is much higher 
than typically used in a commercial PWR; this does impact the boron hideout prediction, but should not 
affect the conclusions drawn in this study. 
 
4.3.  Temporal Coupling 
 
The loose coupling approach adopted between the thermal hydraulics and CRUD deposition physics 
removes the nonlinear dependence of the CRUD deposition process on the thermal hydraulic conditions 
of the plant. Subsequently, three temporal coupling methods are investigated, including a one-way 
coupling, a two-way lagged coupling, and a two-way predictor-corrector coupling. The one-way coupling, 
shown in Figure 4 (top-left), refers to a unidirectional data transfer from the CFD solver to the CRUD 
solver at the beginning of each time step. At each of these points in time, the CFD and neutronics solvers 
were iterated until convergence; therefore, the TH parameters at each step are computed based on a 
realistic power distribution as computed during cycle depletion. Figure 4 (top-right) illustrates a two-way 
coupling where the TH solution lags the CRUD deposition solution; a steady state CFD calculation is 
performed at the beginning of each coupled time step. 
 

 
 

Figure 4. One-way (top-left), two-way time-lagged (top-right) and predictor-corrector (bottom) 
temporal coupling approaches compared for STAR-CCM+/MAMBA. 

 
In the P-C coupling, the nonlinearity of the coupled solution is partially recovered, thus enabling a more 
accurate solution and often longer stepsizes in comparison to the explicit couplings. These benefits are 
realized at the cost of an additional solution of each of the physics during every time step, as depicted in 
Figure 4 (bottom). The P-C algorithm is outlined as: 
 

a. calculate the beginning-of-step (BOS) TH properties, , using the CRUD properties, , 

b. deposit CRUD with  to the EOS using  to obtain the predicted EOS CRUD inventory, , 
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c. calculate  using , 

d. average the predictor and corrector TH properties to obtain the middle-of-step (MOS) TH data 
set, , 

e. and, re-deposit  to EOS using  to obtain . 

4.4.  Stepsize Controller Parameterization 
 
Extension of the predictor-corrector algorithm to enable a stepsize controller is straight forward. One 
additional step is added to the algorithm above, where the difference in the final CRUD state  and the 
predicted state  is calculated and used as a solution residual. The error per unit step method is 
employed as given by Equation 12, where stepsizes are calculated in days. The relative error in the 
integral boron mass (for the entire fuel rod) is used to calculate the convergence residual ,  
 

 

 
Both I and PI controllers were investigated for controlling the coupled CRUD deposition solution. 
Parameterizing the controllers involved determining an acceptable tolerance on the boron mass solution 
and appropriate gain values to result in overall good dynamic behavior. First, an I controller was 
considered and the integral gain was varied between 0.05 and 0.3 in combination with varying the boron 
mass tolerance between  and . Increasing the integral action results in a slower response to 
changes in the error, e.g. if the error increases, the stepsize reduction is slow, or may appear delayed. 
Reasonable stepsize predictions were achieved with integral gains around 0.1 and a boron mass tolerance 
around . 
 
Next, the addition of a proportional error component was considered. The proportional gain was varied 
between 0.05 and 0.4 in combination with the integral gain and boron concentration tolerances previously 
mentioned. Generally, increasing the proportional action results in a quicker response to changes in the 
error, which may offset the slow response of the integral action; thus, a balance of the integral and 
proportional action is sought. However, if the transient response is too high (too large proportional gain), 
oscillatory behavior in the stepsize adjustments may be encountered. 
 
Based on the parameter testing described above, a boron mass tolerance of  is recommended in 
combination with a PI controller with an integral gain of 0.05 and a proportional gain of 0.1. It is noted 
that proportional gains above 0.2 induce stepsize oscillations as the feedback dynamics is too sensitive 
and responds too quickly. Also, decreasing the integral gain results in smoother, damped stepsize 
sequences, which usually means increasing the overall number of time steps within the cycle. The 
parameterization given above provides a good balance and gives acceptable behavior for the classes of 
problems tested. To begin the cycle, the initial time stepsize is fixed at 25 days until boron appears within 
the CRUD deposit. Then, an I controller is used for the first time step where boron may be monitored 
because higher-order controllers, such as PI, require additional information to be known. Each predicted 
stepsize is rounded to the nearest 5 days. 
 
4. RESULTS 
 
4.1. Fixed Stepsize Sequence 
 
The temporal coupling of steady state thermal hydraulics, via computational fluid dynamics (CFD), and 
time-dependent CRUD deposition has been investigated for a 500-day operating cycle. In this section, the 
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results of three fixed stepsize methods are reported.  Precomputed power density distributions were 
supplied (by the neutronics code DeCART) to the CFD solver at each time step for all cases compared.  
 
Figure 5 shows the boron hideout mass for the various temporal discretizations and coupling methods. 
The point in time at which the boron precipitation begins is unknown a priori and is dependent on several 
coupled factors, including temperature, heat flux, and species concentration. Prior to 125 days, the 
predicted boron hideout mass is relatively insensitive to the coupled temporal discretization; however, as 
the precipitation threshold for the lithium tetraborate reaction (Equation 5) is reached within the CRUD 
chemistry solver, the solution sensitivity to the TH boundary conditions increases substantially. 
Moreover, depending on the temporal discretization, the point at which the boron mass reaches a 
maximum varies due to the neutronics coolant boron concentration condition. As the critical boron 
concentration required to maintain criticality decreases throughout the cycle, the precipitation of solid 
boron species slows and eventually stops. Subsequently, the integral boron mass decreases, as shown in 
the comparison in Figure 5 (top-left), due to boron species diffusion within the CRUD layer. 
 
Figure 5 (top-left) also shows the strong effect the coupled stepsize, or frequency of updating the thermal 
hydraulic boundary conditions within the CRUD solver, has on the boron mass prediction for a one-way 
coupling, i.e. no feedback through the CFD solver. At the end-of-cycle (EOC), the boron mass is over-
predicted by 50% for the 50-day simulations when compared to the P-C reference 5-day case. Similarly, 
the fixed 25-day and 5-day one-way coupled approaches over predict the boron mass by 23%.  
 
Figure 5 (middle-left) shows the boron mass predictions for the two-way coupling cases, where the 
thermal hydraulic solution lags the CRUD deposition. In general, introducing the thermal hydraulic 
boundary condition updates results in less boron mass within the CRUD deposit, especially for larger time 
stepsizes. This is primarily due to the heat flux distribution, resulting for the power density distribution 
that changes during depletion. Clearly, a fixed stepsize of 50 days is too large; whereas, the 5-day solution 
differs by less than 10% from the reference. 
 
Figure 5 (bottom-left) compares the predictor-corrector coupling approach for the fixed stepsizes of 50, 
25, and 5 days. A significant improvement in the coarse 50-day solution is noted when using this method. 
The largest differences from the reference occur around the point in time where boron begins to 
precipitate, and the CRUD chemistry conditions are most sensitive to the thermal hydraulic state. The 25-
day case captures this region in time better, but under predicts the boron mass even more so than the 50-
day case by the end of the cycle. This is likely due to nonlinear (in time) variations in the heat flux 
distribution, so when the predictor and corrector TH parameters are averaged within the time step, the 
boron mass prediction may increase or decrease with stepsize refinement. 
 
Figure 5 (right column) compares boron mass predictions for the various temporal coupling approaches 
for the 50 day fixed stepsize (top-right), 25 day fixed stepsize (middle-right), and the 5 day fixed stepsize 
(bottom-right). As previously mentioned, the P-C method with a fixed stepsize of 50 days actually 
performs quite well; the additional computations necessary for the method are rewarded with a fewer 
number of time steps as well as increased accuracy. 
 
Figure 5 (middle-right and bottom-right) compares the coupling methods for the 25 and 5 day stepsize 
lengths, respectively. The one-way and two-way lagged methods consistently over-predict the boron 
mass, which is likely due to the heat flux and cladding temperature are typically decreasing in time (with 
depletion), so lagging the TH boundary condition updates on the CRUD solution results in higher 
boundary condition values and thus more boron mass. On the other hand, the 25-day P-C method 
consistently under predicts the EOC boron mass; similarly, this is due to the P-C method linearly 
interpolating the nonlinear coupled solution. 
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Figure 5. Boron mass prediction for one-way (top-left), two-way lagged (middle-left), and P-C 
(bottom-left) couplings using 50, 25, and 5 day fixed time stepsizes. Comparison of boron mass 
prediction for the three temporal coupling approaches for 50 day stepsizes (top-right), 25 day 

stepsizes (middle-right), and 5 day stepsizes (bottom-right) to the reference 5 day P-C solution. 
 

5.2. Adaptive Stepsize Selection 
 
The adaptive stepsize controller predictions for the stepsize (left) and boron mass (right) are compared 
with the 5 day P-C reference case in Figure 6. The boron mass prediction is reasonable with a relative 
error of about 5% at the end of the cycle. The number of time steps has been reduced from 20 steps for 
the 25 day fixed stepsize case to 18 steps in the adaptive case. Additionally, a small gain in accuracy of 
approximately 1-2% is realized. 
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Figure 6. Stepsize (left) and boron mass (right) comparison of adaptive and reference solutions. 
 
5. CONCLUSIONS 
 
The temporal coupling of the CFD and CRUD deposition physics was investigated for a single fuel pin 
cell with spacer grids and mixing vanes under typical PWR operating conditions. An adaptive stepsize 
selection algorithm based on control theory was developed. Monitoring the changes in the total boron 
concentration between predictor and corrector calculations allowed control of the convergence residual of 
the thermal hydraulic and CRUD deposition calculations. A proportional-integral, PI, controller was 
implemented and parameterized. A boron mass tolerance of , integral gain of 0.05, and 
proportional gain of 0.1 is recommended.  
 
Despite considerably reducing the coupled stepsize to 5 days for the one-way method, the boron mass 
error is more than 20% at the end of the cycle. Similarly, the lagged two-way boron mass prediction with 
5-day stepsizes is over predicted by more than 7%. On the other hand, the predictor-corrector method 
allows coarse stepsizes on the order of 50 days with comparable or better accuracy when compared to all 
other methods and stepsizes, other than the 25-day P-C case. Extending the P-C method to an adaptive 
stepsize selection method shows promise by reducing the number of time steps taken and increasing the 
accuracy when compared to the fixed step methods. Using the controller parameterization defined above, 
the average predicted stepsize is about 25 days. Further optimization of the stepsize controller may be 
possible, thus additional parmaterizations and the addition of derivative action should be considered. 
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