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ABSTRACT 
 
Nuclear engineering codes are being used to simulate more challenging problems and at higher fidelities 
than they were initially developed for. In order to expand the capabilities of these codes, state of the art 
numerical methods and computer science need to be implemented. One of the key players in this effort is 
the Consortium for Advanced Simulation of Light Water Reactors (CASL) through development of the 
Virtual Environment for Reactor Applications (VERA). The sub-channel thermal hydraulic code used in 
VERA, COBRA-TF (Coolant-Boiling in Rod Arrays - Three Fluids), is partially developed at the 
Pennsylvania State University by the Reactor Dynamics and Fuel Management Research Group 
(RDFMG). The RDFMG version COBRA-TF is referred to as CTF. 
 
In an effort to help meet the objectives of CASL, a version of CTF has been developed that solves the 
residual formulation of the one-dimensional single-phase conservation equations. The formulation of the 
base equations as residuals allows the code to be run semi-implicitly or fully implicitly while clearly 
defining the original conservation equations. This paper outlines work to integrate one dimensional solid 
conduction equations into the residual formulation. This allows the coupling between the solid and liquid 
equations to be either explicit or implicit. A simple test problem consisting of a single liquid channel and 
fuel pin is used to compare the different numerical models available from the new residual formulation to 
an analytical solution. The methods are compared both for steady state and transient conditions to 
quantify the accuracy of each method. The ability to choose appropriate numerical methods allows for 
greater fidelity and decreases computational expenses. The comparison to an analytical solution helps to 
verify that the code is working properly. The residual formulation will be written into the current version 
of CASL CTF step by step with verification and validation practices along the way. The objective is to 
upgrade the different numerical methods available to CTF and increase software confidence. 
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NOMENCLATURE 
 

Symbol Variable 
� Pressure 
� Enthalpy 
� Velocity 
� Density 
� Temperature 
� Time 
� Channel Axial Position 
� Rod Radial Position 
�� Specific Heat 
� Thermal Conductivity 
� Heat Rate 
���� Heat Generation Rate 
�� Heat Transfer Coefficient 
� Volume 
A Area 
R Thermal Resistance 

 
1. INTRODUCTION 
 
For the past several decades, the primary focus in nuclear engineering within the United States has been 
on light water reactors (LWR). Commercially, all nuclear reactors are either boiling water reactors 
(BWR) or pressurized water reactors (PWR). Correct computation of the thermal hydraulics within the 
reactor core leads to efficient design and accuracy in the safety analysis. A popular subchannel code for 
modeling the hydrodynamics within the reactor core is CTF, which is a subchannel thermal-hydraulics 
code developed from COBRA-TF [1]. This FORTRAN based code solves 8 conservation equations for 
liquid, entrained droplet, and vapor phases, plus one conservation equation for non-condensable gases. A 
residual formulation of the code has been created that is able to solve the 1-D single-phase fluid solution. 
A complete residual formulation for a different version of CTF has already been done [2], and focuses on 
introducing a novel spatially selective non-linear solution method that works in conjunction with the 
original solution method.  This work represents the start of a process to introduce similar techniques into 
the CASL version of CTF in combination with more up to date packages such as PETSc. The residual 
formulation will be written into the current version of CASL CTF step by step with verification and 
validation practices along the way. The objective is to upgrade the different numerical methods available 
to CTF and increase software confidence. This paper outlines the initial work in coupling the liquid and 
solid solutions for the residual formulation. Explicit and implicit coupling between the solid and liquid 
solutions are considered for transient and steady state problems. The steady state calculations are 
compared to the analytical solution for accuracy. The goal is to show that the implicit coupling allows for 
more enhanced stability of the solution, allowing for quicker runtimes utilizing fewer steps. 
 
2. CTF 
 
The thermal hydraulics of a LWR core is an important part of nuclear reactor design. CTF has the ability 
to solve for the temperature and pressure of water within the rod structure of a LWR reactor core. 
Currently, the conservation equations analytically reduce into a pressure matrix in a semi-implicit method 
in which rod temperatures are solved for explicitly. A new option has been written into the user input to 
allow for solution methods using the residual formulation. The residual formulation currently solves the 
1-D axial single-phase liquid and 1-D radial solid energy conservation, and will be expanded in later 
work.  The current objective of the residual formulation is to allow for greater flexibility in the selection 
of the numerical methods as well as easy model parameter exposure work for uncertainty quantification. 
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2.1.  1-D Single Phase Liquid Conservation Equations 
 
For the single-phase formulation of the Euler equations, the unknown variables are pressure P, velocity u, 
enthalpy h, and density �. Density is considered a function of pressure and enthalpy according to the 
equation of state as dictated by the steam tables [3]. To solve for the remaining three variables, three 
conservation equations are needed. The conservation of mass given in equation 1 is the most basic in 
which the rate of change in density is equal to the advection from the upwinded cell. The conservation of 
momentum in equation 2 balances the time rate of change of momentum, the advection of momentum 
from adjacent cells, the gradient of pressure, and body forces. Frictional losses due to grid spacers and 
other affects are assumed to be zero for the scope of this work in order focus on the solid liquid coupling. 
The conservation of energy in equation 3 contains two temporal terms:  the time rate of change of the 
enthalpy and the time rate of change of the pressure. These temporal terms are balanced against the 
advection of the enthalpy. The amount of heat entering the channel is calculated as �� �� � �� , where �� 
is the heat transfer coefficient from the single phase Dittus-Boelter [4] correlation, �� is the wall 
temperature, and �� is the bulk liquid temperature of the cell.  
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2.1.1. CTF fluid meshing 
 
The finite volume structure in CTF in Figure 1 is for a one-dimensional channel in the axial direction with 
n number of cells. The first and last cells, 0 and n + 1, respectively, are ghost cells that act as the 
boundary conditions for the problem. Pressure, enthalpy, and density are averaged over the cell volume 
and are located at the center of the cell. Mass flow rate and velocity are located at the faces in between 
cells. The cells are represented with an index i, and the faces with indexes of i+� � or i-� �. The work 
presented in this paper focuses on this 1D configuration and does not take into account adjacent 
subchannels. 

 
 

Figure 1. CTF Fluid Volume Meshing 
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2.1.2. Fluid finite difference equations 
 
The semi-implicit finite difference formulation of the conservation of mass in equation 4 uses a first order 
accurate forward differencing method for the temporal derivative and the spatial derivatives. The densities 
evaluated at momentum indices such as � � �

�
 represent the density in the adjacent cell to the momentum 

surface at � � �

�
 in direction opposite the direction of velocity at the momentum position. In this way, the 

density is always grabbed from upwind from the momentum surface and never downwind. This is 
necessary because velocity is not affected by changes downwind. For the scope of this project, velocity is 
always positive, so at momentum cell � � �

�
 the density would be evaluated at cell �. The iterator �, is the 

iteration level of the solution. If the solution method is semi-implicit then the number of iterations is one 
and � is equal to �. If the solution method is implicit, then multiple iterations occur until � increments 
from � to � � �. The finite difference formulations of the conservation of momentum in equation 5 and 
the fluid energy conservation in equation 6 are first order accurate for the temporal and spatial 
derivatives.  The last term in the equation is difference between the wall temperature and the bulk fluid 
temperature times the heat transfer coefficient and the wetted perimeter of the connected rod divided by 
the fluid cell area. This numerator of this term is also present in the solid conduction equations and is 
responsible for coupling the solid energy equations to the fluid energy equations. When the fluid 
equations are solved for semi-implicitly, all of these evaluated at the current time step �, and the solid 
conduction equations are explicitly coupled to the fluid equations. When the fluid equations are solved for 
implicitly, the wall temperature and heat transfer coefficient are solved for at the next time size. The fluid 
equations are then implicitly coupled to the solid equations.  
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2.2. 1-D Radial Solid Conduction Equation 
 
The conduction equation for a cylindrical system is given in equation 7. The first term represents the 
amount of energy stored within the solid area within a unit time. The second term is the conduction in the 
radial direction. The second and third terms are the conduction in the azimuthal and axial directions, 
respectively. The last term represents the heat generation within the solid.  
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This work focuses on the 1D radial equations setting the derivatives with respect to the angular and axial 
directions to zero. Equation 7 now reduces to equation 8.   
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When the radius is zero, the fuel temperature is considered to be a maximum giving the boundary 
condition in equation 9. 
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2.2.1. CTF rod meshing 
 
The nuclear rod geometry types in CTF are meshed at each axial level according to figure 2 where the red 
region is fuel and the grey region is cladding. The black dots represent the nodes within the fuel. Each 
node covers a region within the rod as bounded by the dashed lines. The nodes within the fuel are located 
at the center of the region. Each region is assumed to have uniform properties with values evaluated at the 
node. The last node within the fuel is located at the surface of the fuel at the interface with the gap. There 
are two additional nodes that represent the outer clad surface and the inner clad surface respectively. The 
gap between the outer surface of the fuel and the inner surface of the cladding has a specified heat transfer 
coefficient or is calculated using the dynamic gap conductance model.  
 

 
Figure 2. Radial Rod Meshing in j Direction 

 
The outer surface of the cladding is assumed to be in contact with the fluid in the adjacent channel on that 
axial level. The rods have the same number of axial levels as the fluid, but do not have ghost cells at the 
top and bottom. Instead the first and last fluid axial levels are connected to two rod axial levels as shown 
by Figure 3, which displays a single rod centered channel for multiple axial levels. The fluid is 
represented as the rectangular blue regions and the rod as the red cylindrical regions. Each vertical section 
is composed of azimuthal and radial sections as seen in figure 2 and in the right of figure 3.  
 

 
Figure 3. Axial Fluid Rod Meshing 
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2.2.2. Solid finite difference equations 
 
The conduction equation can be approximated using the finite difference method, or the control volume 
difference method [5]. The control volume method will be used since it is the same method utilized in the 
original version of CTF. The implicit finite difference equation now looks like equation 10. 
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The density on the temporal term is defined as the cold mass of the node divided by the current volume of 
the node, so that mass is not lost in the presence of expansion. The temporal derivative is approximated 
with first order accurate forward differencing. The spatial derivatives are evaluated at the right 
boundary,�� � �

�
, and the left boundary, � � �

�
, using first order forward differencing. When � � � at the 

inner most node, the radius at the left boundary and the derivative of the temperature is zero. At the 
boundary between the surface of the fuel and the inside surface of the cladding, a different set of finite 
difference equations are needed as given by equation 11. The fuel spatial derivatives now use backward 
differencing since there is no fuel in the forward direction. The volumetric heat rate across the gap can be 
calculated as the heat flux across the gap times the perimeter of the boundary divided by the area of the 
region. The heat flux across the gap is evaluated as the difference between the cladding inner surface 
temperature and the fuel outer surface temperature times the heat transfer coefficient of the gap.  
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The finite difference equation between the inner and outer cladding surfaces given by equation 13 has no 
heat generation or conduction from the fuel. Instead the volumetric heat rate is calculated using the term 
for the volumetric heat rate across the gap and a similar term but for the volumetric heat rate across the 
cladding. Since the cladding does not have any heat generation, this term is represented as the temperature 
difference across the cladding times the thermal resistance across the cladding times the perimeter of the 
cladding divided by the area of the inner cladding region. 
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The finite difference equation between the inner and outer cladding surfaces given by equation 14 relates 
the wall temperature to the bulk fluid temperature at the same axial level. The volumetric heat rate lost to 
the fluid is represented as the temperature difference between the wall and the fluid times the thermal 
resistance of the fluid and divided by the outer cladding region. 
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The numerator in the last term is also in the fluid energy conservation equation��The heat transfer 
coefficient is currently calculated using the Dittus-Boelter correlation. The fluid properties are evaluated 
at the bulk fluid temperature. When the fluid finite equations are solved for implicitly, they will impact 
the solid conduction equations through the calculation of the heat transfer coefficient and the fluid 
temperature.  
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2.3. Residual Formulation and Jacobian Construction 
 
A residual is simply the difference between the value at some future iteration k + 1 and the value at the 
current iteration k. Currently in CTF, the future iteration is taken to be the next time step n+1 and the 
current iteration is the current time n. The residual can be expressed for desired variables or conservation 
equations. For example, the residual for density, ��, is the difference between iterates levels k+1 and k, 
��
���

� ��
�. The residuals for the equations are determined by substituting the residuals into the 

discretized equations, which should effectively change all n+1 into k. Each cell will have three fluid 
residual variables and three residual equations. For the entire solution, we will then have a residual 
variable array���, and a residual function array F(X) which defines a linear system ���=F(X). The 
Jacobian matrix is defined as the derivative of each response of the function �� with respect to each 
variable ��. The derivative can be calculated numerically as shown by equation 15 where � is a small 
numerical value. 
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To build the Jacobian matrix, an object oriented class was created that contains three arrays; an array that 
points to the residual functions, an array that points to the position within a target variable array, and an 
array that has the index that the function is to be evaluated at. These lists can be appended in any order, 
but they have to be appended simultaneously such that variables and functions correspond with each 
other. The residual function and residual variable arrays can be iterated in nested loops to numerically 
build the Jacobian matrix where each column represents an index of a residual variable and each row 
represents a residual function. The explicitly coupled solid liquid Jacobian matrix can be seen on the left 
in Figure 4, where blue values represent negative entries and red values positive entries. The black lines 
were drawn on top of the image to represent artificial boundaries between the liquid Jacobian matrix in 
the top left corner and the solid Jacobian matrix in the top right corner.  
 

 
Figure 4. Explicitly (left) and Implicitly Coupled (right) Liquid Solid Jacobian Matrix 

 
The fluid Jacobian matrix contains 3 conservation equations for every axial level. The liquid function 
residuals are appended in the order of mass conservation, energy conservation, and momentum 
conservation for each axial level. These correspond the pressure, enthalpy, and velocity at each axial 
level. The liquid Jacobian matrix can be evaluated as either semi-implicit or fully implicit. The solid 
Jacobian matrix contains 1 energy conservation equation for each node in the rod. Since axial and 
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azimuthal conduction are not computed, each radial level is computed separately from the rest. This can 
be seen by the lack of cross terms in the Jacobian matrix at each axial level. The Jacobian matrix on the 
right is an implicit coupling between the implicit liquid Jacobian matrix and the implicit solid matrix. The 
cross terms in the top right corner represent the effect of the wall temperature on the energy equation in 
the liquid Jacobian matrix. The terms on the bottom left represent the effects of pressure, enthalpy, and 
velocity on the energy equation in the solid Jacobian matrix. The implicit matrix is unconditionally stable, 
allowing for time steps greater than the material Courant limits. Once the coupled Jacobian matrix is 
constructed, a solution for the linear system ���=F(X) is found using the Krylov solver from PETSC [6]. 
The residuals for each of the conservation equations are then L2 normalized by taking the square root of 
the sum of squared values over the domain to determine the convergence of the system.  
 
 
3. UNIFORM HEATING TEST PROBLEM 
 
3.1. Problem Description 
 
The test problem is a nuclear rod with uniform heat generation with parameters given in Table I. The fuel 
and cladding are assumed to have constant material properties. The mass flow rate, reference pressure, 
and inlet temperature approximate normal PWR operating conditions. However, the heat generation rate 
is much less than normal PWR operating conditions to ensure that the problem remains well within the 
single-phase regime with an expected outlet temperature of 300.0 �

� . Additionally, the problem is set up 
so that the calculation of the heat transfer coefficient using the Dittus-Boelter correlation is appropriate.  
 
 
 

Table I. Problem Parameters  
Variable Symbol Value Units 

Mass Flow Rate � 0.300 kg/sec 
Reference Pressure ���� 16.50 MPa 

Liquid Inlet Temperature ������ 290.0 �
�  

Heat Generation Rate �� 4.0 W/m 
Active Fuel Length � 3.658 m 

Fuel Radius ����� 0.4096 cm 
Outer Cladding Radius ��� 0.475 cm 
Inner Cladding Radius ��� 0.4174 cm 

Rod Pitch � 12.60 cm 
Clad Specific Heat Capacity ������� 0.431 kJ/kg-K 

Clad Density ����� 8470.57 kg/m^3 
Clad Thermal Conductivity ����� 14.83 W/m-k 
Fuel Specific Heat Capacity ������� 0.289 kJ/kg-K 

Fuel Density ����� 10970.40 kg/m^3 
Fuel Thermal Conductivity ����� 14.83 W/m-k 

Gap Heat Transfer Coefficient ���� 5678.30 kW/m^2-K 
 
 
3.2. Steady State Analytical Solution 
 
At steady state conditions and for uniform heat generation, the original conduction equation can be 
integrated to obtain equation 16.  
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The temperature at the fuel surface can be calculated from the cladding inner surface temperature and the 
thermal resistance across the gap as given in equation 17.  
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The temperature at the inner surface of the cladding can be calculated from the cladding inner surface 
temperature and the thermal resistance across the cladding as given by equation 18.  
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The temperature at the outer surface of the cladding can be calculated from the fluid temperature and the 
thermal resistance due to convection as given by equation 19.  
 

� ��� � �  – �� � �
��

�������
                                                          (19) 

 
Notice that the difference between any radial temperature and the fluid temperature at the same axial level 
are independent of the axial levels height. This difference will be compared first to verify that the 
conduction equation is working properly.  
 
3.3. Steady State Results 
 
The temperature distribution within the fuel rod relative to the wall surface temperature can be seen in 
Figure 5. The analytical solution matches well with the different solution methods both within the fuel 
and at the cladding surfaces. The differences between the analytical solution and the numerical solutions 
are highest at the fuel centerline. This error is due to the numerical error from the finite differencing 
approximations made within the fuel. The fuel centerline temperature is extrapolated from the first and 
second nodal temperatures using a second order accurate forward differencing approximation of the 
boundary condition in equation 9. Normally CTF uses a different extrapolation method, but in order to 
consistently compare to the residual formulation this method was not used.  
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Figure 5. Steady State Radial Temperature Distribution Difference to Rod Surface Temperature  
 
The relative error given in Table II is shown to scale with the inverse of the number of radial nodes in the 
fuel. The relative error does not scale with heat flux, but the temperature gradient from the fuel centerline 
to the rod wall does. The numerical error will also change for non-uniform heating and variable material 
properties within the fuel. The implicit transient solution method has slightly higher numerical error than 
the semi-implicit transient and implicit steady state solution methods. However, all three residual 
formulation methods have lower numerical error as compared to the original steady state method from 
CTF. The order of accuracy is difficult to compute, since CTF uses non-uniform meshing near the rod 
center and since the fuel centerline temperature is extrapolated using a second order accurate method. The 
non-uniform mesh size also means that a Richardson extrapolation is not valid. 
 
 

Table II. Relative Error of Difference Between Fuel Centerline to Rod Surface Temperature 
Radial Nodes in 

Fuel 
Semi-implicit 

Transient 
Implicit 

Transient 
Implicit  

Steady State 
Original 

Steady State 
5 1.33% 1.35% 1.32% 2.15% 

10 0.45% 0.48% 0.45% 0.78% 
20 0.15% 0.18% 0.14% 0.20% 

 
 
While there is no solid conduction in the axial direction, the fluid will have a temperature gradient in the 
axial direction. This will cause a 2-D temperature distribution as shown by Figure 6. The fluid 
temperature only changes by about 10 C from the inlet to the outlet, but the fuel temperature changes by 
about 90 C from the outer surface of the cladding to the fuel centerline temperature. The hottest location 
of the fuel is located on the centerline at the top of the rod. The centerline fuel temperature is slightly 
under predicted by both the residual formulation and the original versions of CTF. However as table II 
shows, this is attributable to numerical error.  The computational speed of the original pseudo steady state 
calculation was 0.687 sec and the residual implicit steady state calculation was 0.439 sec.  For this 
problem the computational speeds are similar between the two versions of the code since there is not 
much non-linear behavior in the solution. Future work might involve analyzing a steady state problem 
where the computational speeds will be more different.  
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Figure 6. Steady State Axial and Radial Temperature Distribution in the Fuel Rod 
 
3.4. Transient Results   
 
The transient simulations for the residual semi-implicit and implicit solution methods were run for 30.0 
seconds to reach a pseudo-steady state condition. The rate of change of the temperatures have reached 
near steady state conditions as shown by Figure 7 were the red lines are fuel node temperatures, and the 
black lines are cladding node temperatures. The semi-implicit method is used on the left, and the fully 
implicit method is on the right. For the semi-implicit solution method, a maximum time step size of 0.05 
sec was needed to ensure stability. For the implicit solution method time step sizes well over 0.05 seconds 
are able to be taken. For the data in the figure, time steps of 1.0 second were used. The point of these plots 
is to show convergence of the systems for both, and that the general profiles are the same. The difference 
between them is almost zero, and when plotted is either a straight line or very small numerical noise. The 
implicit Jacobian matrix is stiffer than the Jacobian matrix for the semi-implicit method and therefore 
takes longer to solve. Additionally, for time steps with large residuals multiple up to 5 iterations are 
needed. However the advantage of being able to take significantly longer time steps makes up for the 
increased computational cost per time step required by the semi-implicit method as seen in table III. The 
temperatures gained from the semi-implicit method and the implicit methods do not differ by significant 
amounts. 

 
Figure 7. Plot of the Radial Nodal Temperatures for Semi-Implicit (left) and Implicit (right) 

 
The transient behavior of temperature profile is shown in Figure 8 where the flat green line is the initial 
condition, the red line is the final profile, and the black lines are intermediate time steps. It is easier to 
observe the difference in the number of time steps between the semi-implicit method on the left and the 
implicit method on the right. The intermediary time steps are still the same, as is the final solution. 
However, the implicit method will have greater numerical error compared to the semi-implicit method 
since the temporal and spatial errors do not cancel. As table III shows, the potential increase in time step 
size using the implicit solution method makes up for the longer computational costs of the residual 
formulation. The implicit transient solution method can be just as fast or faster than the original semi-
implicit solution method.  
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Figure 8. Temperature profile over time for Semi-Implicit (left) and Implicit (right)  

 
 

Table III. Transient Run Time Comparisons  
Code Version Solution Method Time Step Size [sec] Wall Clock Time [sec] 

Original Original Semi-Implicit 0.05 2.226 
Residual Semi-Implicit 0.05 8.591 
Residual Implicit 0.05 36.709 
Residual Implicit 1.00 2.377 
Residual Implicit 10.00 0.622 

 
 
4. CONCLUSIONS  
 
The residual formulation of the one-dimensional single-phase liquid and solid residual formulations were 
listed. Combining the liquid and solid equations into a single Jacobian matrix allowed for easy explicit or 
implicit coupling. This solution method was tested against the analytical solution for a single rod with 
uniform heat generation. Similar results were obtained between the two solutions, and the ability to 
exceed the time step limitations of the semi-implicit method was demonstrated. Future work will involve 
performing a more in depth verification analysis of the steady state and transient solutions. Further work 
will also include examining more challenging test problems that can properly demonstrate the advantages 
of the implicitly coupled fluid solid Jacobian matrix.  The effect of temperature dependent material 
properties and dynamic gap conductance will also be considered. A homogenous energy equation can 
now be easily implemented by adding the liquid and solid conservation equations. Future work will be 
analyzing the homogeneous energy approximation over a state space to see when the approximation is 
valid. The conduction equations will be extended into the azimuthal and axial directions for more realistic 
heat transfer. 
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