
SOFTWARE QUALITY ASSURANCE AND V&V PROCEDURE DURING
THE DEVELOPMENT STAGES OF EDF CFD TOOL CODE_SATURNE:

FOCUS ON VERIFICATION TESTS

J. Fontaine, M. Ferrand and E. Le Coupanec
EDF, R&D, Fluid Mechanics, Energy and Environment Dept.

6, Quai Watier, 78401 Chatou Cedex, France
jacques-j.fontaine@edf.fr

ABSTRACT

The present paper gives the state of the Software Quality Assurance (SQA) practices and the unitary
Verification and Validation (V&V) procedures of the free Computational Fluid Dynamics (CFD) software
Code_Saturne. The strict definitions of verification and validation are detailed. The autovnv framework
embedded in Code_Saturne and dedicated to automate the V&V procedure is presented. A focus on the
verification methodology is presented and particularly the computation of the time and space
discretization errors. At the end, three verification test cases from Code_Saturne 4.0 autovnv are detailed.

KEYWORDS
Software Quality Assurance, V&V, CFD, Code_Saturne, MMS, MES

1. INTRODUCTION

The paper shows some technical aspects of the Verification and Validation (V&V) procedure of EDF
open source CFD software Code_Saturne (Archambeau et al. [1], http://code-saturne.org).
Code_Saturne is an in-house EDF application designed to solve Navier-Stokes equations in the cases of
2D, 2D axi-symmetric and 3D flows. Its main module intends to simulate the flows which may be steady
or unsteady, laminar or turbulent, incompressible or dilatable, isothermal or not. Scalars and turbulent
fluctuations of scalars can be taken into account. The code includes specific modules, referred to as
“specific physics”, for the treatment of Lagrangian particle tracking, semi-transparent radiative transfer,
gas combustion, pulverized coal combustion, fire modeling, magneto-hydrodynamics (Joule effect and
electric arcs), compressible flows, severe accidents and groundwater flows. It can also be coupled with
SYRTHES1 code for conjugate heat transfers with or without radiative effects. Code_Saturne is a
massively parallel application based on a hybrid MPI/OpenMP parallelization (P. Trespeuch et al. [2]).
The code is highly scalable and demonstrates an efficient speed-up at very high core counts, e.g. from
32,768 to 65,536 cores. (Moulinec et al. [3]). Code_Saturne is a free software under the terms of the GNU
General Public License as published by the Free Software Foundation; sources and documentation of the
code are available on the dedicated web site.
Elementary verification and validation work is one of the main parts of the Code_Saturne project at EDF
R&D. V&V procedures are built to measure correctness and accuracy of the mathematical and physical
models. This work is a prerequisite for the integral validation (e.g. Barthet et al. [4]) and is crucial to
enhance simulation credibility.

1 http://syrthes.org

2059NURETH-16, Chicago, IL, August 30-September 4, 2015 2059NURETH-16, Chicago, IL, August 30-September 4, 2015

First, the paper presents the Software Quality Assurance practices during the development of
Code_Saturne and focuses on technical points related to the verification procedure; then three examples
of verification cases from Code_Saturne V&V database are detailed and the results obtained with
Code_Saturne 4.0 are presented.

2. VERIFICATION AND VALIDATION DURING THE DEVELOPMENT PROCESS OF

CODE_SATURNE: TERMINOLOGY AND METHODOLOGY

The definitions of verification and validation are based on those that can be found in Oberkampf et al. [5].
The verification means establishing that the mathematical models implemented are a faithful
representation of the original theoretical models (code verification) and ensuring that the utilized
mathematical models are adapted to the numerical problem (solution verification).
The validation (or model validation) is the process of determining whether a model is an accurate
representation of a real-life configuration.
Code_Saturne V&V procedure aims at evaluating whether the code capabilities behave as expected and if
the implemented mathematical and physical models are of good quality on a selected range of test cases.
Therefore, academic as well as industrial test cases have been selected to cover our needs with the
following requirements:

 represent at least once the different flow regimes (laminar, turbulent, stratified, …);

 depict at least once the specific physics of interest (coal combustion, conjugate heat transfer,
atmospheric flow, …);

 evaluate discretization schemes and numerical options;

 test the code solution on classical industrial geometries (U-bend, T-Junction, …).

The evaluation is done by comparisons between the obtained numerical solution and an exact solution
(MES2), a manufactured solution (MMS3), experimental results or in some particular cases, other
numerical solutions (usually DNS4 computations). Whenever it is possible, the level of error is quantified
with a numerical criterion (discrete L2 error for instance, see section 2.2.).

2.1. Software Quality Assurance (SQA) During the Development Process of Code_Saturne

The development process of Code_Saturne follows strict predefined rules. The main objective is to
minimize programming errors during the implementation of the computational models. The next
subsections give a few elements about the SQA activities in the development process of the code.

2.1.1. Co-development, Subversion code repository and documentation

In order to minimize misunderstanding during the code development or its use, several documentation
guides are provided. The installation guide gives instructions for complex installations (on big clusters),
the user manual lists the calculation options and the physical models, the theory guide describes
numerical and physical modeling aspects, the developer guide gives coding rules and the source code
DOXYGEN5 documentation makes easier the documentation of function prototypes and the exploration
of the code through a web browser.

2 Method of Exact Solution.
3 Method of Manufactured Solution.
4 Direct Numerical Simulation.
5 www.doxygen.org

2060NURETH-16, Chicago, IL, August 30-September 4, 2015 2060NURETH-16, Chicago, IL, August 30-September 4, 2015

Co-development and tracking of the source code modifications are simplified with the use of a
Subversion code repository.
Only a short list of developers can add new code modifications on the development version (trunk) of
Code_Saturne. The developments provided by other developers (for instance from the open source
community) are added to the trunk version if the following criteria are fulfilled:

 the developers followed the rules detailed in the Code_Saturne developer guide;
 non-regression tests have been successful;
 DOXYGEN, user, and theory documentations have been updated;
 if a new model has been developed, at least one well documented test case is provided and

included in the V&V procedure.

2.1.2. Code versioning policy

As for all software, different kinds of versions are released (see Figure 1). The main difference is between
the fully validated, long-term support versions (x.0) and the intermediate versions (x.1, x.2, x.3, …).

The x.0 versions are released every 2 years and are maintained for 4 years. They have to go through the
full V&V process and are mainly intended to be used by the engineering of EDF. The intermediate
versions are released every 6 months and maintained for 1 year. They are provided to the users who want
to try or validate the latest functionalities of the code. Patched versions may be released with .z extension
to adapt the code portability or to solve unexpected bugs.

Figure 1. Versioning policy of Code_Saturne.
Trunk (or development) versions in blue, intermediate versions in green, long-term support

versions in orange.

2.1.3. Autovnv tool, V&V Subversion repository and daily non-regression testing

Autovnv (for automatic validation and verification) is a tool developed as a part of Code_Saturne,
providing a framework for the automation of the computations launch and the post-processing of results,
as for example comparing 1D profiles from different computations to available experimental results.
Furthermore, autovnv is able to bitwise compare a new result file to a previous one; this functionality
allows performing non-regression verification tests when the code undergoes a refactoring.
The autovnv tool is non-intrusive: a standard setup is established and a XML file containing commands
for each Code_Saturne test case is added to control automatic runs and the post-processing. Note that
autovnv does not need a specific installation and the entire framework is embedded in the source code.

br
an

ch
es

3.0.1 3.0.2

trunk 3.1 3.2 3.3 4.0 5.0

3.0.z
4.0.1

3.1.1

3.2.1
3.3.1

3.0

2061NURETH-16, Chicago, IL, August 30-September 4, 2015 2061NURETH-16, Chicago, IL, August 30-September 4, 2015

The reader willing to have a review of all the capabilities and parameters of the autovnv framework is
invited to read the autovnv manual6.
All the test cases of Code_Saturne V&V database have been setup according to the predefined autovnv
format. Computations and post-processing are entirely repeatable. The V&V database is versioned with a
Subversion repository allowing a better traceability and avoiding human errors in the setup and post-
processing stages.
In addition to daily automatic compilations on different environments (different compilers and options,
with/without MPI, with/without OpenMP, …), the autovnv allows performing daily “minimal” tests on all
V&V test cases (only 10 outer iterations are run and the check is performed at the last one). If an error is
detected in at least one test case, new modifications in the code repository are not allowed except for
solving the encountered problem. When the bug is fixed, restriction on code modification is lifted.

At the time of the writing, about 250 validation cases and 560 verification cases are daily run.

2.2. Verification Methodology of the Numerical Schemes with MES or MMS

The present section introduces technical aspects utilized in the validation process of Code_Saturne. The
formula to compute discretization errors are detailed and a methodology to obtain an estimator of the
convergence ratio is proposed.
(Ue, Pe) is the exact solution (non equal to zero) of Navier-Stokes equations (U and P variables) obtained
with MES or MMS. If a transport equation is introduced for a scalar quantity (Y variable), Ye stands for
the exact solution. (UΣ, PΣ, YΣ) is the numerical solution computed by Code_Saturne with a given
discretization Σ (in time and in space).
The discretization error E2

Σ(U) (L2) of the velocity vector is defined as:

i
i

e

i
i

ie

iU

UiU
UE











2

2

2

2

2

)(

)(
)(,

where i is the volume of a computational cell i, Ue(i) and Ui the values of the exact and numerical

solutions in cell i, respectively. The discretization error on a scalar quantity Y is defined as:

E 
2
(Y) 

Ye (i)Yi
 

i

 2
i

Ye (i)
i

 2
i

.

When the pressure field is defined to within a constant, the discretization error for the pressure is
computed with a correction and is defined as:

E 
2
(P) 

Pe (i) Pe
mean  P mean  Pi







i


2

i

P
e
(i)

i

 2


i

,

6 http://code-saturne.org/cms/documentation

2062NURETH-16, Chicago, IL, August 30-September 4, 2015 2062NURETH-16, Chicago, IL, August 30-September 4, 2015

where:

Pe
mean  Pe (i) i

1

ii
i

 ,

P mean  Pi i
i

 1

ii


.

The discretization error is calculated at a given physical time (unsteady problems) or after the
convergence in time (steady problems). The two cases are detailed in the next subsections.

2.2.1. Steady state Navier-Stokes problems

In Code_Saturne, a steady numerical solution may be obtained after the time convergence of an unsteady
algorithm (or pseudo-steady). The problem is iteratively solved to get the steady solution, hence a
stopping criterion is needed to interrupt the computation. A steady problem is supposed converged in time
when for each variable X of (U, P, Y), the following criterion is verified:

D (X) 
ti

2 X i
t  X i

t 1

2

2

i
i



X
i 2

2


i
i


 ,

where Xt
i is the value of the discrete field X (can be a vector field) in cell i at the time step t (or pseudo

time step), and Δti is the value of the local time step of cell i.

The value which one has to take for ε is not straightforward and depends on the considered problem and
the chosen numerical options.

When the time convergence is obtained and the space refinement tends to 0, one wants to verify that:

 the numerical solution converges towards the analytical solution;

 the local numerical convergence ratio converges towards the theoretical convergence ratio.

One defines the convergence ratio for the variable X between two homogeneous space refinement levels h
and a*h (where a is a strictly positive real) as:

p̂ a ,h (X) 
ln E

2
a*h (X) E

2
h (X)





ln a 
.

The « ^ » distinguishes the local numerical convergence ratio from the theoretical one. The goal is to
verify that:

p̂ a ,h (X)
h0

  p (X) ,

where p(X) is the theoretical convergence ratio.

First, it is required to prove that the local numerical convergence ratio is in the asymptotic convergence
zone. For this purpose, the local convergence ratio has to be calculated on at least 3 refinement levels.
One has also to verify that the local convergence ratio is constant. Finally, the converged local
convergence ratio can be compared to the theoretical one.

2063NURETH-16, Chicago, IL, August 30-September 4, 2015 2063NURETH-16, Chicago, IL, August 30-September 4, 2015

2.2.2. Unsteady Navier-Stokes problems

In case of unsteady problems, the discretization error is computed at a given physical time τ. The
discretization error includes time and space discretization errors. The global convergence ratio could be
computed using the previous methodology. In this case, the space-time discretization level Σ of
parameters (h, Δt) tends to 0 homogeneously.

The main disadvantage of this methodology is that it is impossible to distinguish the time error from the
space one. In order to estimate space and time errors separately, one proposes the methodology used in
the verification report of Fire Dynamics Simulator (McDermot et al. [6]) and Thétis (Thétis [7]).
First, the discretization error is computed with a fixed time step (the smallest one) at different space
discretization levels. One assumes the existence of a zone where the error coming from space
discretization becomes negligible compared to the one due to time discretization (space saturation zone).
Finally, the time convergence ratio is calculated in the space saturation zone. One can proceed in a similar
way to estimate space convergence ratio (in the time saturation zone).

3. EXAMPLES OF CODE_SATURNE VERIFICATION CASES

3.1. Verification of Space Discretization Operators

3.1.1. Basic verification of the diffusion operator

The elliptic problem being considered here is the heterogeneous anisotropic diffusion. The main objective
is to verify Code_Saturne solvers for heterogeneous diffusion problems (Ferrand et al. [8]). As several
elliptic problems are solved in the code, the present test is applied to various steps in the core solver
(diffusion part of a scalar transport equation with Generalized Gradient Diffusion Hypothesis (GGDH)
(Dehoux et al. [9]), projection step of the predictor-corrector Navier-Stokes solver in presence of pressure
losses, ...). The presented benchmark case is taken from FVCA-6 conference (Eymard et al. [10]).
The general Poisson equation which is studied reads:

div K Y   f on 

Y  Ye on 







where  = [0,1]3,  is its boundary, Y a scalar field defined on the domain ,, K the diffusivity tensor

field, assumed to be symmetric positive definite and f a source term.
MMS is utilized in the three following test cases. If Ye stands for the imposed analytical solution, the

source term is given by ݂ ൌ െdiv ቀ	ܭ. ׏ ௘ܻቁ and the boundary condition by the value of this analytical

solution at the boundary. One gives in the following the analytical expressions of K and Yd in the

different cases.
The first analytical test case (case 1) is defined with:

K 
1 05 0

05 1 05
0 05 1

















Y
e

 1 sin  x sin  y  1

2



















sin  z  1

3





















2064NURETH-16, Chicago, IL, August 30-September 4, 2015 2064NURETH-16, Chicago, IL, August 30-September 4, 2015

The second analytical test case (case 2) is defined as follows:

K 

1 y 2  z 2 xy xz

xy 1 x 2  z 2  yz

xz  yz 1 x 2  y 2



























Y
e

 x 3 y 2z  x sin 2 xy sin 2 xz sin 2 z 

This case is representative of the applications covered by the algorithm solving the diffusive term of a
scalar transport equation with a heterogeneous and anisotropic tensor K , but not discontinuous.

The last analytical test case (case 3) presented here is:

 K 
1 0 0
0 1 0
0 0 1000
















Y

e
x   sin 2 x sin 2 y sin 2 z 

All the these cases are run on hexahedral meshes (HEX), tetrahedral meshes (TET), prism meshes with
triangle bases (BLS) and prism meshes with general bases (DBLS) of the FVCA-6 benchmark mesh
database (see Eymard et al. [10]). Figure 2 gives an overview of the meshes.

Figure 2. An overview of mesh types.

Figures 3 to 5 show the results of the discrete L2 errors for the variable Y and its gradient, with all the
meshes and for the three analytical test cases. As expected, a second order convergence rate on the
variable and a first order one on its gradient are obtained, respectively. One may notice that the results do
not exhibit perfectly a second order with BLS on case 3. This is due to high non-orthogonal faces induced
by the stretching of the tetrahedral computational cells. A hyper-convergence is also observed for the
gradient of the scalar quantity with HEX and DBLS meshes on all the cases, this is probably due to the
good properties induced by hexahedral and polyhedral elements (Moulinec et al. [11]).

2065NURETH-16, Chicago, IL, August 30-September 4, 2015 2065NURETH-16, Chicago, IL, August 30-September 4, 2015

Figure 3. L2 discrete error, as a function of the total number of unknowns (number of cells), in

logarithmic scale for all the mesh series for case 1.

Figure 4. L2 discrete error, as a function of the total number of unknowns (number of cells), in

logarithmic scale for all the mesh series for case 2.

Figure 5. L2 discrete error, as a function of the total number of unknowns (number of cells), in

logarithmic scale for all the mesh series for case 3.

2066NURETH-16, Chicago, IL, August 30-September 4, 2015 2066NURETH-16, Chicago, IL, August 30-September 4, 2015

3.1.2 Verification of steady state flow with a variable density

The Navier-Stokes problem being considered in the present section is 2D, steady and with a variable
density. The temperature equation is also solved. This verification case is from Shunn et al. [12]. The
main objective is to verify in Code_Saturne the use of a variable density and the discretization in space
(convection and diffusion operators). MMS is again applied.

All the variables underscore e stand for the explicit analytical solutions used in the MMS.
A zero divergence mass flux is chosen:

 e eU (x  y) 
[1 cos(2 x)]sin(2 y)

sin(2 x)[cos(2 y)1]













The pressure and scalar fields are given by the following equations:

Pe (x  y)  sin( x   2)sin( y   2)

Te (x  y)  1

2
(sin(2 x)sin(2 y)1)









Finally, the following equation of state is given for the density:

 e 
1

Te


1


1Te


0











where ρ0 and ρ1 are the extreme densities of the fluid at Te = 0 and 1, respectively.
The different source terms are then deduced from the governing equations (in the following, the unsteady
term vanishes):

SU  e

U
e

t
 U e

U
e

x
 Ve

U
e

y

P

e

x


2U
e

x 2

2U

e

y 2











1

3

2U
e

x 2

2V

e

xy











S
V

 
e

V
e

t
 U

e

V
e

x
 V

e

V
e

y

P

e

x


2V
e

x 2

2V

e

y 2











1

3

2V
e

x 2

2U

e

xy











S
T

 
e

T
e

t
 U

e

T
e

x
 V

e

T
e

y
 K

2T
e

x 2

2T

e

y 2











The domain is a square perpendicular to the z -direction. Its dimensions are 1 x 1.
Several meshes have been used to check the convergence. The number of elements varies from 32 x 32 to
256 x 256, with either hexahedral or triangular prism cells. The 32 x 32 hexahedral mesh is shown in
Figure 6, along with the 32 x 32 prismatic one.

Figure 6. 32 x 32 meshes, with either hexahedral (left) or prismatic (right) elements.

X

Y

Z
X

Y

Z

2067NURETH-16, Chicago, IL, August 30-September 4, 2015 2067NURETH-16, Chicago, IL, August 30-September 4, 2015

The flow is considered to be steady and laminar at a Reynolds number equal to 1. The Prandtl number is

set to 0.71 and the Rayleigh number to 5000. The density ratio   1

0
 is equal to 0.1, with ρ0 = 1. Gravity

is not taken into account.
Three different convection schemes are tested: a pure upwind scheme, a pure centered scheme (without
slope test) and a SOLU (Second order Linear Upwind) scheme. The steady state is obtained after
convergence of the unsteady solver. The time convergence is reached when D < 10-10 for all the variables.
Expected convergence ratios are obtained, first order with the upwind scheme (Figure 7) and second order
with the centered and the SOLU discretization (Figure 8).

Figure 7. L2 discrete error, as a function of the total number of unknowns (number of cells), in

logarithmic scale for all the mesh series with upwind scheme for convection term.

Figure 8. L2 discrete error, as a function of the total number of unknowns (number of cells), in

logarithmic scale for all the mesh series with centered (left) and SOLU (right) schemes for
convection term.

3.2. Verification of Algorithms in Time

Taylor-Green vortices (see for example [13]) represent decaying vortices over time and exhibit an
analytical solution which is appropriate to perform a MES. This flow has exact theoretical solutions
considering 2D incompressible Navier-Stokes equations. The main objective is to verify in Code_Saturne
the velocity/pressure coupling algorithms and the discretization in time.

2068NURETH-16, Chicago, IL, August 30-September 4, 2015 2068NURETH-16, Chicago, IL, August 30-September 4, 2015

A particular solution of the Navier-Stokes problem on the domain [0,1] x [0,1] with a molecular
kinematic viscosity equal to 1/Re and periodic boundary conditions in the two space directions is given
by:

U
e
(x  y t)  sin(x)cos(y) exp( 2

Re
t)

V
e
(x  y t)   cos(x)sin(y) exp( 2

Re
t)

P
e
(x  y t)  

4
cos(2x) cos(2 y) exp( 4

Re
t)

For the Cartesian grid used in the present test case, initial velocity and pressure at cell i follow:

U
e
(i)  1


i

i
 sin(x)cos(y)d

 z

i

cos x
i
 x

2









 cos x

i
 x

2



















 sin y

i
 y

2









 sin y

i
 y

2





















V
e
(i)  1


i

i
  cos(x)sin(y)d

 z

i

sin x
i
 x

2









 sin x

i
 x

2



















 cos y

i
 y

2









 cos y

i
 y

2





















Pe (i)  1


i

i
 

4
cos(2x) cos(2 y) d

 z


i


2 4

sin 2xi x   sin 2xi x    sin 2 yi y   sin 2 yi y   

with i
 is the cell volume and x (resp. y) the cell size along x-axis (resp. y-axis).

Moreover, initial velocity and pressure at a face f follow:

 (U)e (f)   1

S f
S f
 sin(x)cos(y)dS

   z

S f

sin(x f) sin(y f 
y
2

) sin(y f 
y
2

)










 (V)e (f)   1

S f
S f
  cos(x)sin(y)dS

   z

S f

sin(y f) sin(x f 
x
2

) sin(x f 
x
2

)










with S f
 being the face area and x (resp. y) the face size along x-axis (resp. y-axis).

The velocity and pressure are then given by the following analytical formulas:

 U e (x  y t) U e (x  y 0)exp( 2

Re
t)

2069NURETH-16, Chicago, IL, August 30-September 4, 2015 2069NURETH-16, Chicago, IL, August 30-September 4, 2015

 Ve (x  y t) Ve (x  y 0)exp( 2

Re
t)

 Pe (x  y t)  Pe (x  y 0)exp( 4

Re
t)

The fluid domain is 2 x 2. The mesh is hexahedral and the number of cells is 1024 x 1024. Other tests
showed that this mesh is enough to be in the space saturation zone. Periodic conditions are imposed at the
boundary of the domain in x and y directions, respectively. Density is set to 1 and the Reynolds number is
equal to 10 3⁄ . The time step is taken between t  25 and t  2. Spatial discretization is centered
without a slope test and Rhie and Chow interpolation is disabled. Convergence is tested with implicit
Euler, double backward implicit Euler and Crank-Nicolson time schemes. Inner subiterations are also
introduced (“nterup” in Figure 9).
In the following, the errors are considered at time t = 4, which corresponds roughly to a decrease of 90%
of the velocity magnitude.
Taylor-Green vortices exhibit a particular situation where convection and pressure gradient terms are in
balance. Hence, time evolution of velocity follows:

U
t

 1

Re
U   2

Re
U

Hereafter, the theoretical evolution of U assuming perfect solving of laplacian on a cartesian grid and
exact respect of equilibrium between convection and pressure gradient is developed for the different time
schemes. These results give the theoretical convergence of the different time schemes when error in time
dominates.
Implicit Euler:

U

n1
U

n

t
 1

Re
U

n1

 U
n


n

1

1 2
Re
t









 U

0

Second order backward differentiation (double backward Euler):

U

n1
 4

3
U

n
 1

3
U

n1

t
 2

3

1

Re
U

n1

 U
n1

 4U
n
U

n1

3 4
Re
t

Second order Crank-Nicolson:

U

n1
U

n

t
 1

2Re
U

n1
U

n













 U
n


n
1 t

Re

1 t
Re









 U

0

 Figure 9 shows the results obtained with the different time schemes and with and without inner iterations
on pressure –velocity coupling. It is clear that the expected orders are obtained with the Euler time
stepping and Crank-Nicolson approaches while using the inner iterations for pressure/velocity coupling.

2070NURETH-16, Chicago, IL, August 30-September 4, 2015 2070NURETH-16, Chicago, IL, August 30-September 4, 2015

Figure 9. L2 discrete error as a function of the time step, in logarithmic scale with (nterup) and

without inner iterations on Navier-Stokes system.

4. CONCLUSIONS

An overview of Software Quality Assurance activities for the development process of Code_Saturne has
been presented. Several technical aspects of Code_Saturne verification procedure such as the definition of
the discretization errors, the computation of convergence ratios, the mesh topologies used in the tests and
some test-cases based on MES or MMS have been described. The results obtained on this verification
cases show that the numerical models implemented in Code_Saturne 4.0 are a faithful representation of
mathematical models theory.

ACKNOWLEDGMENTS

The authors would like to thank Y. Fournier, T. Moy, B. Sapa, F. Nmira and R. Camy for their
contribution in the V&V process and S. Benhamadouche for the careful proofreading of the present paper.

REFERENCES

1. F. Archambau, N. Mehitoua and M. Sakiz, “Code Saturne: A finite volume Code for the computation

of turbulent incompressible flows,” International Journal on Finite Volume (2004).
2. P. Trespeuch, Y. Fournier, C. Evangelinos, P. Vezolle, “Mesh Renumbering Methods and Performance

with OpenMP/MPI in Code Saturne,” Proceedings of the Fourth International Conference on
Parallel, Distributed, Grid and Cloud Computing for Engineering, Civil-Comp Press, Stirlingshire,
UK, Paper 30, (2015).

3. C. Moulinec, A.G. Sunderland, P. Kabelikova, A. Ronovsky, V. Vondrak, A. Turk, C. Aykanat and C.
Theodosiou, “Optimisation of Code_Saturne for Petascale Simulations,” Partnership for Advanced
Computing in Europe, (2014).

4. A. Barthet, B. Gaudron and D. Alvarez, “Code_Saturne integral validation on a ROCOM test,” The
15th Internationnal Topical Meeting on Nuclear Thermal – Hydraulics, NURETH-15, Pisa, Italy, May
12-17, (2013).

2071NURETH-16, Chicago, IL, August 30-September 4, 2015 2071NURETH-16, Chicago, IL, August 30-September 4, 2015

5. W.-L. Oberkampf, and C.-J. Roy. “Verification and Validation in Scientific Computing,” Cambridge
University Press, (2010).

6. R. McDermott, K. McGrattan, S. Hostikka, and J. Floyd. “Fire Dynamics Simulator (Version 5)
Technical Reference Guide Volume 2: Verification,” NIST, (2010).

7. Thétis, “Cahier de Validation,” http://thetis.enscbp.fr, (2010).
8. M. Ferrand, J. Fontaine and O. Angelini, “An Anisotropic Diffusion Finite Volume Algorithm Using a

Small Stencil”, Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic
Problems, pp. 577-585 (2014).

9. F. Dehoux, Y. Lecocq, S. Benhamadouche, R. Manceau and L.-E. Brizzi, “Algebraic Modeling of the
Turbulent Heat Fluxes Using the Elliptic Blending Approach - Application to Forced and Mixed
Convection Regimes,” Flow, turbulence and combustion, 88, pp. 77-100 (2012).

10. R. Eymard, G. Henry, R. Herbin, F. Hubert, R. Klöfkorn, G. Manzini, “3D Benchmark on
Discretization Schemes for Anisotropic Diffusion Problems on General Grids,” FVCA 6 conference
proceedings, Springer, (2011).

11. C. Moulinec, S. Benhamadouche, D. Laurence, M. Perić. « LES in a U-Bend Pipe Meshed by
Polyhedral Cells », Engineering Turbulence Modelling and Experiments 6, pages 237-246, Sardinia,
23-25 May (2005).

12. L. Shunn, F. Ham and P. Moin, “Verification of variable-density flow solvers using manufactured
solutions,” Journal of Computational Physics, 231(9), pp. 3801–3827, (2012).

13. S. Benhamadouche, “Large-Eddy Simulation with the unstructured collocated arrangement”, PhD
thesis, The University of Manchester (2006).

2072NURETH-16, Chicago, IL, August 30-September 4, 2015 2072NURETH-16, Chicago, IL, August 30-September 4, 2015

