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ABSTRACT 
 
The present paper gives the state of the Software Quality Assurance (SQA) practices and the unitary 
Verification and Validation (V&V) procedures of the free Computational Fluid Dynamics (CFD) software 
Code_Saturne. The strict definitions of verification and validation are detailed. The autovnv framework 
embedded in Code_Saturne and dedicated to automate the V&V procedure is presented. A focus on the 
verification methodology is presented and particularly the computation of the time and space 
discretization errors. At the end, three verification test cases from Code_Saturne 4.0 autovnv are detailed. 
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1. INTRODUCTION 
 
The paper shows some technical aspects of the Verification and Validation (V&V) procedure of EDF 
open source CFD software Code_Saturne (Archambeau et al. [1], http://code-saturne.org).  
Code_Saturne is an in-house EDF application designed to solve Navier-Stokes equations in the cases of 
2D, 2D axi-symmetric and 3D flows. Its main module intends to simulate the flows which may be steady 
or unsteady, laminar or turbulent, incompressible or dilatable, isothermal or not. Scalars and turbulent 
fluctuations of scalars can be taken into account. The code includes specific modules, referred to as 
“specific physics”, for the treatment of Lagrangian particle tracking, semi-transparent radiative transfer, 
gas combustion, pulverized coal combustion, fire modeling, magneto-hydrodynamics (Joule effect and 
electric arcs), compressible flows, severe accidents and groundwater flows. It can also be coupled with 
SYRTHES1 code for conjugate heat transfers with or without radiative effects. Code_Saturne is a 
massively parallel application based on a hybrid MPI/OpenMP parallelization (P. Trespeuch et al. [2]). 
The code is highly scalable and demonstrates an efficient speed-up at very high core counts, e.g. from 
32,768 to 65,536 cores. (Moulinec et al. [3]). Code_Saturne is a free software under the terms of the GNU 
General Public License as published by the Free Software Foundation; sources and documentation of the 
code are available on the dedicated web site. 
Elementary verification and validation work is one of the main parts of the Code_Saturne project at EDF 
R&D. V&V procedures are built to measure correctness and accuracy of the mathematical and physical 
models. This work is a prerequisite for the integral validation (e.g. Barthet et al. [4]) and is crucial to 
enhance simulation credibility.  

                                                 
1 http://syrthes.org 
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First, the paper presents the Software Quality Assurance practices during the development of 
Code_Saturne and focuses on technical points related to the verification procedure; then three examples 
of verification cases from Code_Saturne V&V database are detailed and the results obtained with 
Code_Saturne 4.0 are presented.  
 
2. VERIFICATION AND VALIDATION DURING THE DEVELOPMENT PROCESS OF 

CODE_SATURNE: TERMINOLOGY AND METHODOLOGY 
 
The definitions of verification and validation are based on those that can be found in Oberkampf et al. [5]. 
The verification means establishing that the mathematical models implemented are a faithful 
representation of the original theoretical models (code verification) and ensuring that the utilized 
mathematical models are adapted to the numerical problem (solution verification). 
The validation (or model validation) is the process of determining whether a model is an accurate 
representation of a real-life configuration. 
Code_Saturne V&V procedure aims at evaluating whether the code capabilities behave as expected and if 
the implemented mathematical and physical models are of good quality on a selected range of test cases. 
Therefore, academic as well as industrial test cases have been selected to cover our needs with the 
following requirements: 

 represent at least once the different flow regimes (laminar, turbulent, stratified, …); 

 depict at least once the specific physics of interest (coal combustion, conjugate heat transfer, 
atmospheric flow, …); 

 evaluate discretization schemes and numerical options; 

 test the code solution on classical industrial geometries (U-bend, T-Junction, …). 

The evaluation is done by comparisons between the obtained numerical solution and an exact solution 
(MES2), a manufactured solution (MMS3), experimental results or in some particular cases, other 
numerical solutions (usually DNS4 computations). Whenever it is possible, the level of error is quantified 
with a numerical criterion (discrete L2 error for instance, see section 2.2.). 

2.1.  Software Quality Assurance (SQA) During the Development Process of Code_Saturne 
 
The development process of Code_Saturne follows strict predefined rules. The main objective is to 
minimize programming errors during the implementation of the computational models. The next 
subsections give a few elements about the SQA activities in the development process of the code. 
 
2.1.1. Co-development, Subversion code repository and documentation 
 
In order to minimize misunderstanding during the code development or its use, several documentation 
guides are provided. The installation guide gives instructions for complex installations (on big clusters), 
the user manual lists the calculation options and the physical models, the theory guide describes 
numerical and physical modeling aspects, the developer guide gives coding rules and the source code 
DOXYGEN5 documentation makes easier the documentation of function prototypes and the exploration 
of the code through a web browser. 

                                                 
2 Method of Exact Solution. 
3 Method of Manufactured Solution. 
4 Direct Numerical Simulation. 
5 www.doxygen.org 
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Co-development and tracking of the source code modifications are simplified with the use of a 
Subversion code repository. 
Only a short list of developers can add new code modifications on the development version (trunk) of 
Code_Saturne. The developments provided by other developers (for instance from the open source 
community) are added to the trunk version if the following criteria are fulfilled: 

 the developers followed the rules detailed in the Code_Saturne developer guide; 
 non-regression tests have been successful; 
 DOXYGEN, user, and theory documentations have been updated; 
 if a new model has been developed, at least one well documented test case is provided and 

included in the V&V procedure. 
 

2.1.2. Code versioning policy 
 

As for all software, different kinds of versions are released (see Figure 1). The main difference is between 
the fully validated, long-term support versions (x.0) and the intermediate versions (x.1, x.2, x.3, …). 

The x.0 versions are released every 2 years and are maintained for 4 years. They have to go through the 
full V&V process and are mainly intended to be used by the engineering of EDF. The intermediate 
versions are released every 6 months and maintained for 1 year. They are provided to the users who want 
to try or validate the latest functionalities of the code. Patched versions may be released with .z extension 
to adapt the code portability or to solve unexpected bugs. 

 

Figure 1.  Versioning policy of Code_Saturne. 
Trunk (or development) versions in blue, intermediate versions in green, long-term support 

versions in orange. 
 

2.1.3. Autovnv tool, V&V Subversion repository and daily non-regression testing 
 
Autovnv (for automatic validation and verification) is a tool developed as a part of Code_Saturne, 
providing a framework for the automation of the computations launch and the post-processing of results, 
as for example comparing 1D profiles from different computations to available experimental results. 
Furthermore, autovnv is able to bitwise compare a new result file to a previous one; this functionality 
allows performing non-regression verification tests when the code undergoes a refactoring. 
The autovnv tool is non-intrusive: a standard setup is established and a XML file containing commands 
for each Code_Saturne test case is added to control automatic runs and the post-processing. Note that 
autovnv does not need a specific installation and the entire framework is embedded in the source code. 
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The reader willing to have a review of all the capabilities and parameters of the autovnv framework is 
invited to read the autovnv manual6.  
All the test cases of Code_Saturne V&V database have been setup according to the predefined autovnv 
format. Computations and post-processing are entirely repeatable. The V&V database is versioned with a 
Subversion repository allowing a better traceability and avoiding human errors in the setup and post-
processing stages. 
In addition to daily automatic compilations on different environments (different compilers and options, 
with/without MPI, with/without OpenMP, …), the autovnv allows performing daily “minimal” tests on all 
V&V test cases (only 10 outer iterations are run and the check is performed at the last one). If an error is 
detected in at least one test case, new modifications in the code repository are not allowed except for 
solving the encountered problem. When the bug is fixed, restriction on code modification is lifted. 

At the time of the writing, about 250 validation cases and 560 verification cases are daily run. 

 

2.2. Verification Methodology of the Numerical Schemes with MES or MMS 
 
The present section introduces technical aspects utilized in the validation process of Code_Saturne. The 
formula to compute discretization errors are detailed and a methodology to obtain an estimator of the 
convergence ratio is proposed.  
(Ue, Pe) is the exact solution (non equal to zero) of Navier-Stokes equations (U and P variables) obtained 
with MES or MMS. If a transport equation is introduced for a scalar quantity (Y variable), Ye stands for 
the exact solution.  (UΣ, PΣ, YΣ) is the numerical solution computed by Code_Saturne with a given 
discretization Σ (in time and in space).  
The discretization error E2

Σ(U) (L2) of the velocity vector is defined as: 
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where i is the volume of a computational cell i, Ue(i) and Ui the values of the exact and numerical 

solutions in cell i, respectively. The discretization error on a scalar quantity Y is defined as: 

E 
2
(Y ) 
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 
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When the pressure field is defined to within a constant, the discretization error for the pressure is 
computed with a correction and is defined as:  
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6 http://code-saturne.org/cms/documentation 
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where: 

Pe
mean  Pe (i ) i

1

ii
i

 ,

P mean  Pi i
i

 1

ii


.
 

 
The discretization error is calculated at a given physical time (unsteady problems) or after the 
convergence in time (steady problems). The two cases are detailed in the next subsections. 
 
2.2.1. Steady state Navier-Stokes problems 

In Code_Saturne, a steady numerical solution may be obtained after the time convergence of an unsteady 
algorithm (or pseudo-steady). The problem is iteratively solved to get the steady solution, hence a 
stopping criterion is needed to interrupt the computation. A steady problem is supposed converged in time 
when for each variable X of (U, P, Y), the following criterion is verified: 

D (X ) 
ti

2 X i
t  X i

t 1
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i
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X
i 2

2
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i
i


 , 

where Xt
i is the value of the discrete field X (can be a vector field) in cell i at the time step t (or pseudo 

time step), and Δti is the value of the local time step of cell i. 

The value which one has to take for ε is not straightforward and depends on the considered problem and 
the chosen numerical options.  

When the time convergence is obtained and the space refinement tends to 0, one wants to verify that: 

 the numerical solution converges towards the analytical solution; 

 the local numerical convergence ratio converges towards the theoretical convergence ratio. 

One defines the convergence ratio for the variable X between two homogeneous space refinement levels h 
and a*h (where a is a strictly positive real) as: 

p̂ a ,h (X ) 
ln E

2
a*h ( X ) E

2
h (X )





ln a 
. 

The « ^ » distinguishes the local numerical convergence ratio from the theoretical one. The goal is to 
verify that: 

p̂ a ,h (X )
h0

  p (X ) , 

where p(X) is the theoretical convergence ratio. 

First, it is required to prove that the local numerical convergence ratio is in the asymptotic convergence 
zone. For this purpose, the local convergence ratio has to be calculated on at least 3 refinement levels. 
One has also to verify that the local convergence ratio is constant. Finally, the converged local 
convergence ratio can be compared to the theoretical one. 
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2.2.2. Unsteady Navier-Stokes problems 
 
In case of unsteady problems, the discretization error is computed at a given physical time τ. The 
discretization error includes time and space discretization errors. The global convergence ratio could be 
computed using the previous methodology. In this case, the space-time discretization level Σ of 
parameters (h, Δt) tends to 0 homogeneously. 

The main disadvantage of this methodology is that it is impossible to distinguish the time error from the 
space one. In order to estimate space and time errors separately, one proposes the methodology used in 
the verification report of Fire Dynamics Simulator (McDermot et al. [6]) and Thétis (Thétis [7]). 
First, the discretization error is computed with a fixed time step (the smallest one) at different space 
discretization levels. One assumes the existence of a zone where the error coming from space 
discretization becomes negligible compared to the one due to time discretization (space saturation zone). 
Finally, the time convergence ratio is calculated in the space saturation zone. One can proceed in a similar 
way to estimate space convergence ratio (in the time saturation zone). 

 
3. EXAMPLES OF CODE_SATURNE VERIFICATION CASES 
 
3.1. Verification of Space Discretization Operators 
 
3.1.1. Basic verification of the diffusion operator 
 
The elliptic problem being considered here is the heterogeneous anisotropic diffusion. The main objective 
is to verify Code_Saturne solvers for heterogeneous diffusion problems (Ferrand et al. [8]). As several 
elliptic problems are solved in the code, the present test is applied to various steps in the core solver 
(diffusion part of a scalar transport equation with Generalized Gradient Diffusion Hypothesis (GGDH) 
(Dehoux et al. [9]), projection step of the predictor-corrector Navier-Stokes solver in presence of pressure 
losses, ...). The presented benchmark case is taken from FVCA-6 conference (Eymard et al. [10]). 
The general Poisson equation which is studied reads: 

 
div K Y   f on 

Y  Ye on 






 

where  = [0,1]3,  is its boundary, Y a scalar field defined on the domain ,, K  the diffusivity tensor 

field, assumed to be symmetric positive definite and f a source term.  
MMS is utilized in the three following test cases. If Ye stands for the imposed analytical solution, the 

source term is given by ݂ ൌ െdiv ቀ	ܭ. ׏ ௘ܻቁ and the boundary condition by the value of this analytical 

solution at the boundary. One gives in the following the analytical expressions of K  and Yd in the 

different cases. 
The first analytical test case (case 1) is defined with: 

 

K 
1 05 0

05 1 05
0 05 1








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





Y
e

 1 sin  x sin  y  1

2















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sin  z  1

3



















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2064NURETH-16, Chicago, IL, August 30-September 4, 2015 2064NURETH-16, Chicago, IL, August 30-September 4, 2015



 
 
The second analytical test case (case 2) is defined as follows: 

 
K 

1 y 2  z 2 xy xz

xy 1 x 2  z 2  yz

xz  yz 1 x 2  y 2



























Y
e

 x 3 y 2z  x sin 2 xy sin 2 xz sin 2 z 

  

This case is representative of the applications covered by the algorithm solving the diffusive term of a 
scalar transport equation with a heterogeneous and anisotropic tensor K , but not discontinuous. 

The last analytical test case (case 3) presented here is:  

 K 
1 0 0
0 1 0
0 0 1000
















Y

e
x   sin 2 x sin 2 y sin 2 z   

All the these cases are run on hexahedral meshes (HEX), tetrahedral meshes (TET), prism meshes with 
triangle bases (BLS) and prism meshes with general bases (DBLS) of the FVCA-6 benchmark mesh 
database (see Eymard et al. [10]). Figure 2 gives an overview of the meshes. 
 

 
Figure 2.  An overview of mesh types. 

 
Figures 3 to 5 show the results of the discrete L2 errors for the variable Y and its gradient, with all the 
meshes and for the three analytical test cases. As expected, a second order convergence rate on the 
variable and a first order one on its gradient are obtained, respectively. One may notice that the results do 
not exhibit perfectly a second order with BLS on case 3. This is due to high non-orthogonal faces induced 
by the stretching of the tetrahedral computational cells. A hyper-convergence is also observed for the 
gradient of the scalar quantity with HEX and DBLS meshes on all the cases, this is probably due to the 
good properties induced by hexahedral and polyhedral elements (Moulinec et al. [11]). 
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Figure 3.  L2 discrete error, as a function of the total number of unknowns (number of cells), in 

logarithmic scale for all the mesh series for case 1. 
 

 
Figure 4.  L2 discrete error, as a function of the total number of unknowns (number of cells), in 

logarithmic scale for all the mesh series for case 2. 
 

 
Figure 5.  L2 discrete error, as a function of the total number of unknowns (number of cells), in 

logarithmic scale for all the mesh series for case 3. 
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3.1.2 Verification of steady state flow with a variable density 
 
The Navier-Stokes problem being considered in the present section is 2D, steady and with a variable 
density. The temperature equation is also solved. This verification case is from Shunn et al. [12]. The 
main objective is to verify in Code_Saturne the use of a variable density and the discretization in space 
(convection and diffusion operators). MMS is again applied. 
 
All the variables underscore e stand for the explicit analytical solutions used in the MMS. 
A zero divergence mass flux is chosen: 

 e eU (x  y ) 
[1 cos(2 x )]sin(2 y )

sin(2 x )[cos(2 y )1]












 

The pressure and scalar fields are given by the following equations: 

 
Pe (x  y )  sin( x   2)sin( y   2)

Te (x  y )  1

2
(sin(2 x )sin(2 y )1)









  

Finally, the following equation of state is given for the density: 

 e 
1

Te


1


1Te


0









  

where ρ0 and ρ1 are the extreme densities of the fluid at Te = 0 and 1, respectively. 
The different source terms are then deduced from the governing equations (in the following, the unsteady 
term vanishes):  

SU  e

U
e

t
 U e

U
e

x
 Ve

U
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x 2
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e
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S
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
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
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





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

 

The domain is a square perpendicular to the z -direction. Its dimensions are 1 x 1. 
Several meshes have been used to check the convergence. The number of elements varies from 32 x 32 to 
256 x 256, with either hexahedral or triangular prism cells. The 32 x 32 hexahedral mesh is shown in 
Figure 6, along with the 32 x 32 prismatic one. 

 
Figure 6.  32 x 32 meshes, with either hexahedral (left) or prismatic (right) elements. 
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The flow is considered to be steady and laminar at a Reynolds number equal to 1. The Prandtl number is 

set to 0.71 and the Rayleigh number to 5000. The density ratio   1

0
 is equal to 0.1, with ρ0 = 1. Gravity 

is not taken into account. 
Three different convection schemes are tested: a pure upwind scheme, a pure centered scheme (without 
slope test) and a SOLU (Second order Linear Upwind) scheme. The steady state is obtained after 
convergence of the unsteady solver. The time convergence is reached when D < 10-10 for all the variables. 
Expected convergence ratios are obtained, first order with the upwind scheme (Figure 7) and second order 
with the centered and the SOLU discretization (Figure 8). 

 
Figure 7.  L2 discrete error, as a function of the total number of unknowns (number of cells), in 

logarithmic scale for all the mesh series with upwind scheme for convection term. 
 

 
Figure 8.  L2 discrete error, as a function of the total number of unknowns (number of cells), in 

logarithmic scale for all the mesh series with centered (left) and SOLU (right) schemes for 
convection term. 

 
3.2. Verification of Algorithms in Time 
 
Taylor-Green vortices (see for example [13]) represent decaying vortices over time and exhibit an 
analytical solution which is appropriate to perform a MES. This flow has exact theoretical solutions 
considering 2D incompressible Navier-Stokes equations. The main objective is to verify in Code_Saturne 
the velocity/pressure coupling algorithms and the discretization in time. 
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A particular solution of the Navier-Stokes problem on the domain [0,1] x [0,1] with a molecular 
kinematic viscosity equal to 1/Re and periodic boundary conditions in the two space directions is given 
by: 

 

U
e
(x  y t )  sin(x )cos( y ) exp( 2

Re
t )

V
e
(x  y t )   cos(x )sin( y ) exp( 2

Re
t )

P
e
(x  y t )  

4
cos(2x ) cos(2 y ) exp( 4

Re
t )

 

For the Cartesian grid used in the present test case, initial velocity and pressure at cell i  follow:  

 

U
e
(i )  1


i

i
 sin(x )cos( y )d

 z

i

cos x
i
 x

2









 cos x

i
 x

2



















 sin y

i
 y

2









 sin y

i
 y

2





















 

 

V
e
(i )  1


i

i
  cos(x )sin( y )d

 z

i

sin x
i
 x

2









 sin x

i
 x

2



















 cos y

i
 y

2









 cos y

i
 y

2





















 

                

Pe (i )  1


i

i
 

4
cos(2x ) cos(2 y ) d

 z


i


2 4

sin 2xi x   sin 2xi x    sin 2 yi y   sin 2 yi y   
 

with i
 is the cell volume and x  (resp. y ) the cell size along x-axis (resp. y-axis).  

Moreover, initial velocity and pressure at a face f  follow:  

    (U )e ( f )   1

S f
S f
 sin(x )cos( y )dS  

    z

S f

sin(x f ) sin( y f 
y
2

) sin( y f 
y
2

)








  

    (V )e ( f )   1

S f
S f
  cos(x )sin( y )dS  

   z

S f

sin( y f ) sin(x f 
x
2

) sin(x f 
x
2

)








   

with S f
 being the face area and x  (resp. y ) the face size along x-axis (resp. y-axis).  

The velocity and pressure are then given by the following analytical formulas: 

 U e (x  y t ) U e (x  y 0)exp( 2

Re
t )   
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 Ve (x  y t ) Ve (x  y 0)exp( 2

Re
t )   

 Pe (x  y t )  Pe (x  y 0)exp( 4

Re
t )

 
The fluid domain is 2 x 2. The mesh is hexahedral and the number of cells is 1024 x 1024. Other tests 
showed that this mesh is enough to be in the space saturation zone. Periodic conditions are imposed at the 
boundary of the domain in x and y directions, respectively. Density is set to 1 and the Reynolds number is 
equal to 10 3⁄ . The time step is taken between t  25 and t  2. Spatial discretization is centered 
without a slope test and Rhie and Chow interpolation is disabled. Convergence is tested with implicit 
Euler, double backward implicit Euler and Crank-Nicolson time schemes. Inner subiterations are also 
introduced (“nterup” in Figure 9). 
In the following, the errors are considered at time t = 4, which corresponds roughly to a decrease of 90%  
of the velocity magnitude. 
Taylor-Green vortices exhibit a particular situation where convection and pressure gradient terms are in 
balance. Hence, time evolution of velocity follows:  

 
U
t

 1

Re
U   2

Re
U   

Hereafter, the theoretical evolution of U assuming perfect solving of laplacian on a cartesian grid and 
exact respect of equilibrium between convection and pressure gradient is developed for the different time 
schemes. These results give the theoretical convergence of the different time schemes when error in time 
dominates. 
Implicit Euler: 

 
U

n1
U

n

t
 1

Re
U

n1
 

 U
n


n

1

1 2
Re
t









 U

0
  

Second order backward differentiation (double backward Euler): 

 
U

n1
 4

3
U

n
 1

3
U

n1

t
 2

3

1

Re
U

n1
 

 U
n1

 4U
n
U

n1

3 4
Re
t

  

Second order Crank-Nicolson: 

 
U

n1
U

n

t
 1

2Re
U

n1
U

n











  

 U
n


n
1 t

Re

1 t
Re









 U

0

 Figure 9 shows the results obtained with the different time schemes and with and without inner iterations 
on pressure –velocity coupling. It is clear that the expected orders are obtained with the Euler time 
stepping and Crank-Nicolson approaches while using the inner iterations for pressure/velocity coupling. 
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Figure 9.  L2 discrete error as a function of the time step, in logarithmic scale with (nterup) and 

without inner iterations on Navier-Stokes system. 
 
4. CONCLUSIONS 
 
An overview of Software Quality Assurance activities for the development process of Code_Saturne has 
been presented. Several technical aspects of Code_Saturne verification procedure such as the definition of 
the discretization errors, the computation of convergence ratios, the mesh topologies used in the tests and 
some test-cases based on MES or MMS have been described. The results obtained on this verification 
cases show that the numerical models implemented in Code_Saturne 4.0 are a faithful representation of 
mathematical models theory. 
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