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ABSTRACT 
 
Analysis methods relying on non-parametric order statistics have been used in the nuclear industry over 
the past decade to provide assurance that regulatory criteria will be met in the event of a hypothetical 
accident.  Thermal-hydraulic codes are used as a surrogate for the system being modeled, and the code is 
exercised within a statistical analysis framework to make predictions of the population of results that 
would occur in the real system.  The code is reasonable representative of the real system, and non-
parametric order statistics are used to demonstrate the regulatory expectation that there is high probability 
that the limits would not be exceeded in the event of an accident. 
 
With a large database of large-break loss-of-coolant accident (LBLOCA) simulation results, it is possible 
to show the sensitivity of the peak cladding temperature (PCT) prediction to different analysis 
assumptions.  A comparison between the known 95th quantile of the population of code predictions and 
the prediction for that result using various sampling techniques is made, and the conclusions are 
compared with expectations based on the underlying statistical theory.  The effect of an imperfect code is 
examined to determine the degree to which claims can be made with respect to the regulatory criteria 
being met in the real system when there is uncertainty or variability in code predictions beyond the 
definition of initial and boundary conditions.  It shown that, even when relying on simulated results, order 
statistics-based analysis techniques provide a robust solution to the engineering problem of assuring that 
nuclear safety will be upheld in the event of an accident. 
.  
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1. INTRODUCTION 
 
The goal of best-estimate loss-of-coolant accident (LOCA) analysis is to provide assurance, with “high 
probability,” that core coolable geometry is met in the unlikely event of an accident.  This is done 
demonstrating that criteria that ensure cladding ductility and survivability are not exceeded. [1]  US 
Nuclear Regulatory Commission (NRC) Regulatory Guide 1.157 [2] proposes that 95% probability is 
sufficient to satisfy this goal.  This is a threshold that has generally been accepted by industry and is also 
typical of engineering practice outside of the nuclear field. 
 
LOCA analyses rely on thermal-hydraulic (T-H) system codes.  Under normal operations, a nuclear plant 
operates predictably and its behavior is well understood.  It has been designed to operate in a condition 
that can be analyzed with precision and accuracy. Under accident scenarios, the system is taken far from 
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its normal operating point, and the behavior (flow regimes, heat transfer phenomena, localized effects) 
cannot be predicted with such precision.  T-H system codes solve the complex response of the system to a 
postulated piping break, but rely on empirical closure relationships and use relatively coarse spatial 
nodalizations.  As a result, the codes will inevitably contain some amount of inaccuracy (bias, consciously 
included to ensure conservatism and compensate for deficiencies) and imprecision (variability due to the 
reliance on closure relationships rather than fully resolving the T-H response to the smallest scales). 
 
In addition to uncertainty arising from the predictive tools, there is uncertainty related to the accident 
itself.  It is unknown when the break will occur, what the state of the plant will be, or even what the break 
will be.  These scenario uncertainties also must be considered if one wishes to show “high probability” of 
success.    
 
Given these contributors to uncertainty, the practitioner must apply some form of uncertainty analysis to 
arrive at a probabilistic statement of success.  Many approaches are available, and several have been 
successfully licensed.  Response surface techniques, in which a surrogate model of the system is 
constructed based on the predictions from the thermal-hydraulic code with changing values for the 
contributors to uncertainty, are limited by the ever-increasing number of simulations required to resolve 
the responses to the individual input parameters.  These methods also can be very labor-intensive.  On the 
other extreme, full Monte Carlo simulation provides a robust convolution of uncertainty for an unlimited 
number of input parameters, but requires too many simulations to make performing such an analysis 
practical with the complex T-H codes used for LOCA analysis (at least historically).    
 
After Guba et al. [3] published a general framework for applying Wilks’ [4] statistical theorem to safety 
analysis applications, best-estimate methods have gravitated toward the use of non-parametric order 
statistics.  The state-of-the-art has been well summarized in [5], and the use of Wilks’ theorem has 
generally been accepted and applied widely. 
 
One such application is within the Westinghouse ASTRUM evaluation method [6], which relies on the 
WCOBRA/TRAC T-H code.  The large break LOCA (LBLOCA) scenario has been analyzed using this 
methodology for a significant number of operating plants.  With this database of results, an illustration of 
the adequacy of non-parametric order statistics uncertainty methods, and a characterization of the effects 
of the T-H code performance, is possible.   
 
 
1.1  Non-Parametric Order Statistics: Theory 
 
Guba et al. [3] developed formulations to define upper and lower tolerance limits of a population based on 
the non-parametric multivariate tolerance limits of Wilks [4].  Eq. 19 of [3] provides the confidence level 
� that a fraction � of a population is bounded by the highest rank from a sample is given by 
 
    � � � � ��       (1) 
 
where N is the sample size.  This well-known equation can be used to derive the minimum sample size 
N=59 needed to make a 95% probability (�=0.95), 95% confidence (�) prediction.  The derivation of Eq. 
1 arises from the more general form in Eq. 16 of [3]: 
 
 

� � � � �	�
 � � �
 
 � � � � � �� � � ���� �������
��� 	� � �����  (2) 
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where � represents the confidence level that the fraction of the population � is bounded by the upper and 
lower tolerance limits set by the samples of rank r (low rank) and s (high rank).  I is the incomplete beta 
function defined by Eq. 17 of [3], and  
 
     ���� �

��
��	����� .      (3)   

  
For the special case where only the upper tolerance interval is of interest (r=0), the relation can be 
expressed as: 
 

� � � � �	�
 �
 
 � � � �� � � ���� �����
��� 	� � �����.   (4) 

 
The sample chosen to define the upper tolerance limit can be defined as rank k, where k=1 for the highest 
rank of the sample, k=2 for the second rank, etc.  Then s=N-k+1, and Eq. 4 becomes: 
 

� � � � �	�
 
 � � � �
 �� � � ���� �����
��� 	� � �����   (5) 

 
[3] also addresses the problem of multiple outcomes.  If the number of outcomes of a process (or a 
prediction in this case) is p, and no correlation between the outcomes is assumed, then it is shown that the 
confidence level that the fraction � of the population of the respective outcomes is bounded by upper and 
lower tolerance limits defined by rank rp (low rank) and sp (high rank) is: 
 

 � � � � ���
 �� � ��
 
 � �� � �� � ��.     (6) 
 
For a one-sided confidence interval where the highest rank is chosen, rp=0 and sp=N-p+1, and  
 

� � � � �	�
 
 �  � �
  � !�.      (7) 
 

Similar to the definition in Eq. 5, if rank k is used to define the upper tolerance limit, sp=N-p-k+2, and 
 

� � � � �	�
 
 �  � � � !
  � � � �� � � ���� ��
�����"�
��� 	� � �����. (8) 

 
Eq. 8 can be used to determine the sample size N, with predictor rank k, needed to support a 95% 
confidence level (�=0.95) that the 95th quantile (�=0.95) has been bounded for p outcomes.  Table I 
provides the sample size required to provide a 95/95 predictor for one or two outcomes based on Eq. 8.   
 
The motivation for using lower ranks is described in [5].  Because the tolerance limit is an approximation 
to the true population, there is inherent conservatism in the typical prediction made using these 
techniques.  Figure 7 of [5] illustrates the theoretical distribution of 95/95 predictions in relation to the 
true population when making predictions using Eq.5 for a single outcome.  With N=59, there is a 
tendency to strongly over-estimate the 95th quantile of the population, a conservatism that diminishes as 
the size of the sample increases (and the rank used to define the 95/95 predictor decreases).  However, 
when setting a tolerance limit using samples of any size, 95% of the analyses will over-predict the true 
95th quantile, and 5% of the analyses will under-predict it.  This is, in essence, the notion of confidence. 
 
For nuclear safety applications, interest lies only in the upper tolerance limit (e.g., PCT must remain 
below 2200 °F (1206 °C) but has no minimum limit), but multiple figures of merit (PCT and maximum 
local oxidation (MLO)) are of interest.  For an analysis, 95% confidence means that both PCT and MLO 
are bounded 95% of the time.      
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Table I. Rank k Required to Achieve 95/95 Predictor 

 

Sample Size N 1 outcome 
(p=1) 

2 outcomes 
(p=2) 

59 1 - 
93 2 1 

124 3 2 
153 4 3 
181 5 4 

 
 
1.2  Non-Parametric Order Statistics: Safety Analysis Context 
 
In the context of non-parametric order statistics methods, “high probability” has, in the US, been 
interpreted to mean 95% probability with 95% confidence (95/95).  Or, it has been accepted that the 95th 
quantile must be predicted or over-predicted at least 95% of the time by the statistical method. 
 
It is important to specify of what the 95/95 prediction is being made, as this will inform the analysis 
method itself and the interpretation of the results.  For example, should one wish to demonstrate that 95% 
of all LOCAs that might occur during the month of January will meet the acceptance criteria, then the 
uncertainty distributions associated with boundary conditions sensitive to the environment, such as 
containment temperatures, should reflect conditions possible in January only.  If it is desired that 95% of 
all LOCAs that occur with a particular axial power distribution meet the limits, then it would be 
inappropriate to treat the axial power distribution as a contributor to uncertainty. 
 
Along these lines, the 95/95 prediction made using a T-H code must be accepted for what it is.  It is a 
statement claiming that the 95th quantile of the outcome of interest will be equal to or less than the 
prediction, with 95% confidence, for the scenario and distributions of uncertainty parameters as defined 
and as predicted by the T-H code.  If the T-H code is a perfect model for the real system, then the 95/95 
prediction applies directly.  However, this is never the case, so the practitioner is compelled to introduce 
biases (conservatism) to ensure that the T-H code bounds reality.  This is the essential reason why 95/95 
predictions from these analyses must be interpreted subjectively as satisfying the need to show that the 
real system will behave acceptably with “high probability.”      
 
2. ILLUSTRATIONS 
 
A database of analysis results generated using the ASTRUM methodology provides a reasonable test case 
for illustrating the predictions using non-parametric order statistics theory.  Furthermore, the studies 
shown here illustrate the effect on the predictor conservatism that finite sample sizes, code bias and 
variability, and the consideration of multiple outcomes will introduce. 
 
Fig. 1 shows the distribution of 2,725 predictions from LBLOCA analyses covering 3- and 4-loop plants.  
Fig. 1(a) shows the PCT distribution, 1(b) shows the MLO distribution, and 1(e) shows MLO as a 
function of PCT.  The two are highly correlated, with a Pearson correlation coefficient of 0.723 (P-Value 
= 0.000), and each has a continuous cumulative distribution function.  Neither distribution is normal 
(Figs. 1(c) and 1(d)). 
Although the results represent T-H predictions for a wide range of plants, each with its own range of 
uncertainty distributions assumed in is respective analysis, no two values are numerically identical.  This 
satisfies the assumption implicit in [3] that the outcome of the process is continuous. 
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For the illustrative studies presented here, the PCT and MLO results shown in Fig. 1 are assumed to 
represent the true population; they are a surrogate for the “real system.”  Because the database is large, the 
95th quantile is known for both PCT and MLO:  1771 °F (966 °C) and 1.96%. 
 
 

 
(a)                       (b) 

 
   (c)         (d) 

 
   (e) 

 
Figure 1.  PCT and MLO distributions for the database.  (e) Implies correlation. 
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2.1.  Study 1:  Illustration of Method Adequacy, Effect of Sample Size 
 
A set of ten thousand (10,000) PCT ‘analyses’ are performed, each by randomly sampling from the 
population of results and using rank statistics to determine a 95/95 predictor.  In the first set, a random 
sample of 59 results (N=59) is taken for each of the 10,000 analyses, and the highest rank case is chosen 
as the 95/95 predictor.  Fig. 2 shows the distribution of analysis results along with the distribution from 
analyses of sample size N=124 (rank 3 is 95/95 predictor) and N=181 (rank 5).   
 
In comparison with the true value for the 95th quantile of 1771 °F (966 °C), the mean predictions are 
1921 °F (1049 °C), 1859 °F (1050 °C), and 1839 °F (1004 °C) for N=59, 124, and 181 respectively, 
corresponding to average levels of conservatism of approximately 150 °F (83 °C), 90 °F (50 °C), and 
70 °F (39 °C).  The measured standard deviation of the prediction populations – the width of the 
distribution shown in Fig. 2 - is an indicator of the stability of the predictor, and decreases as the sample 
size increases:  101 °F (56 °C) for N=59, 62 °F (34 °C) for N=124, and 46 °F (26 °C) for N=181.  As 
expected, 5% of the predictions under-estimate the true 95th quantile regardless of the sample size used in 
the analyses.  However, as the sample size used in the analysis increases, the severity of the under-
prediction decreases as a result of the reduced standard deviation of the prediction population.   
 
While an increase in sample size tends to move the 95/95 predictor closer to the true 95th, a reduction in 
the predictor is not guaranteed (Fig. 3).  For most of the 10,000 analyses, the change in the predictor in 
going from N=59 to N=124 or N=181 samples is less than zero.  For over 10% of the analyses, however, 
the predictor increases.  For those analyses, the N=59 prediction was toward the bottom end of the range 
of predictors.  
 
These observations are inherent in the statistical method itself, and reflect the disadvantage associated 
with using relatively small samples compared with, e.g., full Monte Carlo analysis.  With limited 
knowledge of the true distribution around the 95th quantile of the population, bounding (conservative) 
tolerance limits are constructed.   
 
The safety regulator, interested in ensuring large margins between safety analysis predictions and physical 
limits, prefers larger sample sizes to reduce the variation in the 95/95 predictor and to minimize the 
severity of the under-prediction that could occur 5% of the time.  The plant operator, interested in 
avoiding large over-predictions that could unduly restrict plant operation, also prefers larger sample sizes.  
Both perspectives are well served when a large sample size is used and a stable predictor results. 
  

2482NURETH-16, Chicago, IL, August 30-September 4, 2015 2482NURETH-16, Chicago, IL, August 30-September 4, 2015



 
 

Figure 2.  Distribution of 95/95 Predictors (°F) using N=59, N=124, and N=181.  True 95th quantile is 
1771 °F (966 °C). 

 
 

 
Figure 3.  Distribution of 95/95 Predictor Change (°F) in Comparison to Result with N=59. 
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2.2.  Study 2:  Effect of Code Imprecision (Variability) 
 
Section 2.1 discusses conservatisms introduced in the statistical method due to limited sample sizes, 
assuming that a sample can be taken directly from the population.  In safety analysis, however, samples 
are generated using T-H codes that are surrogates for the real system, and the 95/95 predictor from the 
analysis is of the population of code predictions, not the population of results for the real system. 
 
T-H codes suffer from some amount of imprecision, or variability, due to the coarseness of the mesh used 
to solve the discretized equations.  Logical switches in correlations, such as those related to flow and heat 
transfer regimes, can be smoothed and damped with numerical ramps, but ultimately remain.  
Phenomenological effects, such as the predicted occurrence of rod burst, can alter the solution path in a 
discrete manner.  As a result, the PCT predictions should be viewed as having some resolution. 
 
This imprecision can be represented as a deviation in the prediction for a given LOCA scenario relative to 
the result that would occur in the real system.  Here, it is represented by introducing a normally 
distributed error upon sampling from the population of known results. 
 
Fig. 4(a) illustrates the effect on the results with N=59.  If the code is assumed to predict the true result in 
each simulation only within a standard deviation (�) of 30 °F (17 °C), the mean 95/95 predictor tends to 
increase, with a mean increase of 4 °F (2 °C).  With �=80°F (44 °C), the mean predictor increases from 
1921 °F (1049 °C) to 1952 °F (1067 °C), a change of 31 °F (17 °C).  Furthermore, the population of 
predictors varies more widely.  A standard deviation in the predictor of 101 °F (56 °C) with no 
imprecision increases to 108 °F (60 °C) with �=80°F (44 °C).  Similar trends occur for N=181 (Fig. 4(b)); 
there is an increase in the mean 95/95 predictor of 26 °F (14 °C) with �=80°F (44 °C), and an increase in 
the predictor standard deviation from 46 °F (26 °C) to 49 °F (27 °C). 
 
The imprecision tends to disperse the population of 95/95 predictors, and shift them to higher values, but 
the effect on each individual analysis will vary.  Fig. 5 shows the distribution of change (increase) in the 
10,000 95/95 predictors when the code is assumed to include imprecision with �= 80°F (44 °C).  As in 
Fig.4, the mean increases are 31 °F (17 °C) and 26 °F (14 °C), respectively, for N=59 and N=181.  
However, the variation in the change is large, such that some of the ‘analyses’ would result in lower 95/95 
predictors as a result of the imprecision.  Nonetheless, the effect of code imprecision is to increase the 
achieved confidence level in the predictor in comparison with the true 95th quantile of the real system (see 
Table II).  With larger sample sizes, the effect is more noticeable since the code imprecision is larger in 
comparison with the variation associated with the predictor itself (Fig. 2).    
 
Imprecision, or variability, in the T-H code appears as a contributor to the conservatism associated with 
defining tolerance intervals with non-parametric order statistics.  The sample of T-H predictions is 
dispersed relative to the population of results that would occur in the real system, increasing the chance 
that the predictor is not a good representative of the true 95th quantile.  As a result, more than 95% 
confidence is achieved, as compared with exactly 95% if the T-H code reflected the real system with 
perfect precision.    
 

Table II. Confidence Level Achieved in the Presence of Code Imprecision 
 

Sample Size N � = 0 °F 
(0 °C)  

� = 30 °F 
(17 °C) 

� = 80 °F 
(44 °C) 

59 94.9% 94.9% 96.9% 
124 94.9% 94.8% 97.4% 
181 94.8% 94.6% 97.8% 
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(a) 

 

 
(b) 

Figure 4.  Distribution of 95/95 Predictors (°F) using (a) N=59 and (b) N=181 with standard 
deviation in each sampled result of 30 °F (17 °C) and 80 °F (44 °C).   
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Figure 5.  Change (Increase) in 95/95 Predictor (°F) Resulting from Imprecision with �=80 °F      
(44 °C) for N=59 and N=181. 

 
 
 
2.3.  Study 3:  Effect of Code Inaccuracy (Bias) 
 
In general, biases are introduced to the codes to compensate for shortcomings, less than complete 
understanding of the physical phenomena, or inadequate knowledge of the experimental database to 
which the codes are benchmarked.  While some are intentionally introduced, others arise from 
deficiencies.  The codes tend to predict conservative results even when the initial and boundary conditions 
are known exactly, as endorsed by Regulatory Guide 1.157. 
 
These biases have a predictable effect on 95/95 predictions.  Fig. 6(a) shows the population of predictors 
with N=59 samples in each of 10,000 of the analyses.  Additionally, analyses are performed in which 
each sampled result is assumed to include a code imprecision (variability) of �=30 °F (17 °C) and a code 
inaccuracy (bias) of 30 °F (17 °C), as well as a set with �=30 °F (17 °C) and a bias of 80 °F (44 °C).  
Similarly, Fig. 6(b) shows the results for N=181.  Compared with Figs. 4(a) and 4(b), the effect of the 
bias is to shift the population of predictors to higher PCT by the amount of the bias, with no effect on the 
standard deviation of the predictor population.  In contrast with Fig.4, the effect of the bias is constant for 
all samples, and therefore categorically increases the predictor of every analysis.   
 
Again, Table III shows that more than 95% confidence is achieved due to the bias in the T-H code in its 
representation of the real system.  A constant bias tends to increase the confidence level more for analysis 
with large sample sizes, since the variation among predictors is smaller (Fig.2), so a larger fraction of the 
analyses that under-predict the true 95th quantile will over-predict it due to the bias.  This result may seem 
trivial, but is important.  When benchmarking T-H codes to experimental results, any systematic biases 
should be expected to directly translate to analysis conservatism, and the effect increases (rather than 
diminishes) as the sample size increases. 
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Table III. Confidence Level Achieved in the Presence of Code Imprecision and Bias 
 

Sample Size N � = 0 °F (0 °C) 
bias = 0°F (0 °C) 

� = 30 °F (17 °C)  
bias = 30 °F (17 °C) 

� = 30 °F (17 °C) 
bias = 80 °F (44 °C) 

59 94.9% 97.8% 99.7% 
124 94.9% 98.5% 99.9% 
181 94.8% 99.0% 99.9% 

 
 

 
(a) 

 
(b) 

 
Figure 6.  Distribution of 95/95 Predictors using (a) N=59 and (b) N=181 with standard deviation in 

each sampled result of 30 °F (17 °C), and a bias in each sampled result of either 30 °F (17 °C)  or 
80 °F (44 °C).   
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2.4.  Study 4:  Multiple Outcomes 
 
Table I prescribes the rank statistics to make a 95/95 statement jointly about two outcomes.  The 
populations of PCT and MLO allow for an illustration of this process.  In this study, 10,000 ‘analyses’ are 
performed, where pairs of PCT and MLO are taken at random from their populations (e.g., the 350th value 
of PCT and the corresponding 350th value of MLO) to populate a sample for each ‘analysis.’  For sample 
size N=124, the rank 2 result for both PCT and MLO is taken as the 95/95 predictor.  For N=181, rank 4 
is used.  The confidence level is calculated as the fraction of analyses in which the predictor for both PCT 
and MLO bounds their respective known 95th quantile value.  Additionally, rank 1 results from analyses 
with N=59 are examined to illustrate the effect of multiple outcomes on the confidence level.  Table IV 
shows the results. 
 
With N=59, the sample size is insufficient to jointly make a 95/95 predictor.  While PCT and MLO are 
individually bounded with 95% confidence, they are jointly only bounded with 92% confidence. 
 
When appropriate ranks are used, the confidence level exceeds 95% for the individual outcomes and the 
joint result.  This is the result of the high degree of correlation between the outcomes (Fig. 1(e)). 
 
The confidence level will always exceed the desired confidence level when there is correlation between 
the outcomes, but the magnitude by which it exceeds the desired level will be a function of the degree of 
correlation, the population distribution itself, and the sample size used.  Table IV implies that the 
increased confidence is less with N=181 than with N=124.  This is because the variation among analysis 
predictions is larger with N=124; Fig. 7 shows that the individual predictor population tends to both 
increase and disperse (� increases) when a higher rank is chosen to accommodate the joint probability 
statement.  The effect is lessened as the sample size increases, since more information is known about the 
upper portion of the population, and the change in the predictor due to a single rank in the sample is 
smaller. 
  

Table IV. Confidence Level Achieved in the 95/95 Predictions for PCT and MLO 
 

Sample Size N PCT Only MLO Only PCT and MLO 
59 (rank 1)* 94.9% 95.5% 92.3% 
124 (rank 2) 98.8% 99.0% 98.1% 
181 (rank 4) 97.9% 96.1% 96.9% 

  *Rank 1 is inadequate to form 95/95 statements with N=59 (Table I) 
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(a) 

 
(b) 

 
Figure 7.  Distribution of Individual PCT Predictors (°F) for (a) N=124 and (b) N=181 when using a 

rank appropriate for a single-outcome 95/95 statement and a higher rank appropriate for a two-
outcome 95/95 statement.  True 95th quantile is 1771 °F (966 °C). 
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3. CONCLUSIONS  
 
 A population of thermal-hydraulic calculation results has been used as a basis for assessing the adequacy 
of non-parametric order statistics for providing assurance of meeting nuclear safety limits.  The following 
conclusions have been reached: 

- Sample size:  The desired confidence level can be achieved with multiple combinations of sample 
sizes and lower ranks.  However, the use of larger sample sizes leads to predictions that tend to be 
closer to the true 95th quantile result.  This is desirable for both practitioners and regulators. 

- Code imprecision (variability):  The inability of a T-H code to exactly model the response of a 
real system leads to some variability in predictions.  This variability tends to disperse the 
population of predictors, and ultimately increases the confidence level of the prediction at the 
expense of added conservatism.  This effect, in terms of the increase in confidence level, 
increases with larger sample sizes, since the variability associated with the T-H code increases 
relative to the predictor variability associated with the statistical method itself.   

- Code inaccuracy (bias):  When models are skewed toward conservatism to compensate for 
unmodeled phenomena or lack of knowledge in the physical processes, the analysis predictions 
categorically increase, again resulting in higher confidence levels at the expense of conservatism.  
For reasons similar to the effect of code imprecision, this effect increases with larger sample 
sizes. 

- Multiple outcomes:  If multiple outcomes are well correlated, the confidence level in the joint 
95/95 predictors will exceed the desired level. 

 
T-H codes are imperfect representations of the real system.  However, provided that the analysis scenario 
is defined properly, uncertainty distributions are well defined, and only conservative biases are present in 
the T-H code, at least 95% confidence in the outcome of the real system will be achieved when using 
95/95 predictions based on simulated results.   
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