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ABSTRACT 

Film boiling on a horizontal surface is a typical example of the Rayleigh-Taylor instability. During the 
film boiling, phase changes take place at the interface, so that the effect of phase change on the interfacial 
instability must be taken into consideration. In addition, the vapor layer is not quite thick that a viscous 
flow must be analyzed. In this study, we obtain the dispersion relation for the Rayleigh-Taylor instability 
of viscous fluids with heat and mass transfer. The dispersion relation is numerically solved to investigate 
the effect of phase change on the growth rate. In addition, critical wavenumber and most unstable 
wavelength are examined. 
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1. INTRODUCTION 

Film boiling on a horizontal surface is a typical example of the Rayleigh-Taylor instability. During film 
boiling, the phase change plays an important role in the dynamics of the interface. In addition, since the 
minimum values of vapor films are of the order of 10~100 micro-meters, the viscous effect can be 
dominant over the inertia effect (low Reynolds number). However, the Rayleigh-Taylor instability have 
been usually analysed for isothermal and inviscid flows with an aim to develop boiling heat transfer 
models such as minimum film boiling heat flux [1-3] and critical heat flux [1,4]. Obviously, one needs to 
consider the effects of phase change and fluid viscosities. 

In terms of viscosity and phase change, the classical Rayleigh-Taylor instability refers to the case of two 
inviscid fluids without phase changes.  [5-6] considered the Rayleigh-Taylor instability for viscous fluids.  
[7] incorporated the effect of phase change into the Rayleigh-Taylor instability of inviscid fluids. When 
the fluids are heated from below, the phase change was shown to have the stabilizing effect reducing the 
growth rate, but it did not change the critical wavenumber. [8] considered viscous fluids with phase 
change, and showed that viscosity alone or phase change alone has no effect on the critical wavenumber. 
There was a strong stabilizing effect arising from the coupling of viscosity and phase change. However, 
his analysis was for two fluids with equal kinematic viscosities. [9] formulated a different form of the 
dispersion relation that reduces immediately to the form derived by [5] for isothermal flows. Their 
analysis is easier and more straightforward than the one presented in [8], but their dispersion relation was 
for semi-infinite two fluids with equal kinematic viscosities. Recently, [10] considered viscous potential 
fluids with phase change. The properties of two fluids were different. However, the viscous potential 
approach is inadequate for thin vapour films [11].  
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The purpose of this study is to obtain the dispersion relation of the Rayleigh-Taylor instability for viscous 
fluids with heat and mass transfer. The critical and most unstable conditions are investigated. 

Figure 1 Rayleigh-Taylor instability relevant to nearly saturated film boiling on a horizontal surface 

2. RAYLEIGH-TAYLOR INSTABILITY 

Figure 1 shows the Rayleigh-Taylor instability relevant to nearly saturated film boiling on a horizontal 
surface. The vapour is heated from below, and the liquid is cooled from above. Subscripts 1 and 2 indicate 
the lower fluid (vapour) and the upper fluid (liquid), respectively. The vapour is initially in equilibrium 
with the liquid at the interface. The liquid layer is thick enough to be nearly semi-infinite in view of 
perturbation. However,  Rayleigh-Benard convection does not set in, owing to the small temperature 
gradient across the liquid layer (nearly saturated film boiling). In general, the vapour film is not thick. 
Consequently, the base flow is motionless; and all of the heat conducted across the vapour layer go into 
the liquid without phase change. Two fluids are assumed to be incompressible. 

The linearized equations for perturbations are as follows: 
0� � �v ,  (1) 

2p
t

� ��
� 	� 
 �

�
v v ,  (2) 

where v , � , � , and p  are the velocity vector, density,  viscosity, and pressure, respectively. The 
interface is perturbed as exp( )ikx t� � �� 
� , where �� , k , � , and i  are the amplitude of the perturbed 
interface, the  wavenumber, the growth, and imaginary number, respectively. If the horizontal and vertical 
velocities and perturbed pressure are ( )exp( )u u y ikx t�� 
� , ( )exp( )v v y ikx t�� 
� , and 

( )exp( )p p y ikx t�� 
� , one obtains differential equations for the amplitude of the vertical component of 
the perturbed velocity: 
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where 
  is the kinematic viscosity. 

The no-slip is enforced at the bottom wall (at 0y � ):
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1 0v ��  and  1 0
dv

dy
�

�
. (5) 

The liquid is treated nearly semi-infinite in view of perturbation. Hence, for large  y ,

2 0v �� .  (6) 
A phage change is a non-equilibrium process. When a phase change takes place, the vapour temperature is 
higher or lower than the saturation one at the interface. A general model for phase change (e.g. Hertz-
Knusen relation) takes into account discontinuity of temperature at the interface. The temperature jump is 
however neglected unless phase changes occur too rapidly[12]. Hence, the temperatures of liquid and 
vapour at the interface are set to the saturation temperature which is determined from the saturation 
pressure. The variation of the saturation pressure along the interface induces the variation of the 
interfacial temperature leading to a thermo-capillary effect. However, the large latent heat of phase 
change makes the interface almost isothermal, and thus the interface temperature variation is too small to 
induce a significant thermo-capillary force [13]. Therefore, we ignore the thermo-capillary effect. Below 
are the interfacial conditions at 1y �� :
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Equations (7)~(10), respectively, result from the mass/energy transfer matching, tangential velocity 
matching, normal stress balance, and shear stress matching at the interface. 

The interfacial conditions through Eq. (8)~(10) are readily obtained. We now discuss the interfacial 
condition of Eq. (7) associated with mass/energy transfer at the interface. This condition was first 
introduced by [7], conjecturing that the interface temperature is maintained at the saturation temperature 
corresponding to the base state. To be precise, the interface temperature varies along the interface, but as 
previously stated, the interface temperature remains nearly constant due to the large latent heat of phase 
change. Assuming the motionless base state with  1 1 2 2( ) / ( ) /bw sat sat twK T T K T T� �	 � 	  and neglecting 
the viscous dissipation, he obtained a linearized relationship between the mass flux and perturbation: 
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b
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$ %
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where  n  is the normal interface vector,  L  latent heat, and K   thermal conductivity.  The mass flux is 
the product of a perturbation �   and a proportionality constant b . The constant b  is a function of the 
base state properties, and it will be used to measure the degree of phase change. Equation (7) is obtained 
from conservation of mass:  1 1 2 2( / ) ( / )t t b� � � � �	 � � � � 	 � � � �v n v n . The mass/energy condition of 
Eq. (7) was often used in [7-10]. More comprehensive formulations for phase changes can be found in 
studies regarding the onset of instability in the fluid system where a liquid layer underlies a vapour layer 
[13]. The main difference between existing models is in the predicted magnitude of phase change. All 
models are able to predict phenomena that evaporation takes place when the interface approaches the 
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hotter wall, and condensation occurs when the interface approach the colder wall. In this study, we 
adopted Hsieh’s approach in order to simplify the problem, yielding an analytical dispersion relation. 

For a non-dimensional analysis, we define 2 1/m � ��  , 2 1/r � ��  , 1k( �� , 1 1/ ( )c g�� � �� � ,
3 2

1 1 1/F g� � � �� �  , 2
1 /B g� � �� �  , and 2

1 1/b) � ��  . The wavenumber and growth rate are denoted by 

(  and c . The length and the amplitude of velocity perturbation are scaled by 1�   and 2
1 1/g� � �� ,

respectively: 2
1 1/ ( / )v v g� � �� ��  and 1/y y ��  . Now, we write Eqs. (3) and (4) in the non-dimensional 

forms: 
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where 2 2p Fc(� 
   and 2 2 /q rFc m(� 
  . The boundary/interfacial conditions of Eqs. (5)~(10) are 
written as 
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respectively. Equations (17)~(20) are satisfied at 1y � . The general solution of Eq. (13) is given by 
( 1) ( 1) ( 1) ( 1)

1 11 12 13 14
y y p y p yv A e A e A e A e( (	 	 	 	 	 	� 
 
 
  .  (21) 

Considering the boundary condition of Eq. (16), the general solution of Eq. (14) is given by
( 1) ( 1)

2 21 23
y q yv A e A e(	 	 	 	� 
 .  (22) 

The exponent form is intended for easy applications of the interfacial conditions at 1y �  . 

Upon substitution of Eqs. (15) and (17)~(20) into Eqs. (21) and (22), we have a linear matrix system for 

11A , 12A , 13A , 14A , 21A , and 23A :
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where ( ) / ( )R r rFc rFc) )� 
 
 , / ( )J rFc rFc)� 
 , and 1 2(1 ) /T B c( (	� 	 .
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For non-trivial solutions, the determinant of the matrix must be zero. After considerable algebraic 
manipulation, we obtained the following dispersion relation: 

1 1 2 3 3 4 4 5 5 6( ) 0D A B AB A B A B A B A� 
 
 
 
 
 � ,  (24) 

where 
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1 cosh sinh sinh coshB p p p( ( (� 	 ,
2 2

2 2 (1 cosh cosh ) ( )sinh sinhB p p p p( ( ( (� 	 
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3 cosh sinh sinh coshB p p p( ( (� 	 ,

4 sinh sinh cosh coshB p p p( ( (� 	 ,

5 sinh sinh cosh coshB p p p( ( (� 	 .

Equation (24) relate the wavenumber (  to the growth rate c  . For isothermal flow ( 0) � , 1R J� � ), 
the dispersion relation reduces to the form of [6]. Physically, the wavenumber is real and positive, 
whereas the growth rate may be complex.  

3. DISCUSSION 

The dispersion relation of Eq. (24) was analyzed with water-vapor properties at the saturation pressure of 
150 bar. Recall that b  given by Eq. (12) measures the magnitude of phase change. Therefore, 

2
1 1/b) � ��  will be used to measure the degree of phase change in the non-dimensional analysis. As the 

degree of phase change increases, ) , R , and J  increase as long as the interface is unstable ( 0c � ).
Figure 2 (left) shows the growth rate c  depending on the wavenumber (   when flow is isothermal. F
represents the degree of vapor film thickness. F  varies from 1 to 810 . Figure 2 (right) shows that the 
phase change decreases the growth rate. The arrows indicate the direction of increasing R , i.e., degree of 
phase change. 
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Figure 2. Growth rate as a function of wavenumber. Left: isothermal flow ( 1R � ), Right: The 
arrows indicate the direction of increasing R  ( 1R � )

The critical condition corresponds to the point at which the growth rate is zero. For wavenumbers lower 
than the critical wavenumber, the system is unstable, otherwise, stable. Since Eq. (24) becomes naturally 
zero when c  is zero, the critical equation cannot be obtained by putting 0c �   into Eq. (24). The critical 
equation is asymptotically obtained. For an infinitesimal value of c , Eq. (24) is expressed using the 
Taylor series expansion with regard to c .

2 2
3

20
lim ( ) 0

2c

D D c
D c O c

c c�

! "� �

 
 
 �$ %� �& '

.  (25) 

Since D   and /D c� �  are zero at 0c � , for Eq. (25) to be satisfied, 2 2/D c� �  must be zero at 0c �  . As 
result, we obtain the following critical equation: 

1
2

2 2 2
2 (cosh2 2 1) (sinh2 2

2 cosh2 2
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m

m m mr r mr r
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r ( ( ( () (
( ( ( ( ( ( ( ( (

	 	 	 
 	
	 	 
 	 
 
 
 
 


! "
� 	 $ %

& '
 (26) 
Since 2cosh 2 2 1 0( (	 	 �   and sinh 2 2 0( (	 �  for  0( �  , the square bracket is always positive. 

Therefore, the RHS(right-hand-side) of Eq. (26) is positive for 1/20 B(. . , while it approaches zero as 

0( �  or 1/2B( � . For isothermal flows ( 0) � ), the above equation is satisfied when 1/2B( �  (or 
/k g� �� � ).   When )   is small, there are two values of (   such that RHS is equal to ) . The largest 

one is of physical importance. When )  is higher than the maximum value of RHS, there is no solution of 
Eq. (26) for ( . In this case, the interface is stable for all wavenumbers. 

For a thin layer of vapor ( 1 1k( �� .. ), the RHS of (26) is approximated further. 

1 2 21
(1 )

3
B F) ( (	� 	 .  (27) 

In a dimensional form, 
4 2 1

3
1

3
0

bg
k k


�
� ��

�
	 
 � .  (28) 

There is no liquid viscosity term in Eq. (28), which is attributed to the fact that as the vapor layer is thin 
to the extent of a creeping flow, the vapor viscosity becomes dominant. On the other limit of a thick vapor 
layer ( 1( �� ), the hyperbolic functions are dominant over polynomial functions. In this case, Eq. (26) is 
approximated as 
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Arranging this, 

1 2tanh 2 1
2

tanh 2
(1 )m r B r

m
F

m (( ) (
(

	� �
 � 	� �
� �






.  (30) 

Since tanh 2 1( �  as ( �/ , the above equation goes to

1 2( ) (1 )2 m r B rF( ) (	
 � 	 .  (31) 
In a dimensional form, 
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2
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 �
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Unlike Eq. (28), both liquid and vapor viscosities appear in the critical equation. 

[8] and [9] provided the critical equation for viscous fluids with equal kinematic viscosities and semi-
infinite thicknesses. 

2 4
0k

b g
k


 �
� �

�
	 �
 .  (33) 

One can see that Eq. (32) immediately reduces to (33) when 1 2
 
 
� � . [8] claimed that the critical 
equation for a thin vapor layer was also given by Eq. (33). However, we found that there was error in 
deriving Eq. (33) for a thin vapor layer in [8] . If the error is corrected (omitted here), the critical equation 
is given by Eq. (28). Consequently, the present critical equations are verified. 

Figure 3 shows variations of the most unstable wavelength d0  with F  and R . For a thin vapor layer ( F
is small), the phase change does not influence d0 . To elucidate this behavior, the dispersion relation of 
Eq. (24) is approximated with regard to F  and ) . While the zeroth- and first-order terms are zero, the 
second- and higher-order terms are not zero. Therefore, for the dispersion relation to be asymptotically 
satisfied, the second-order term must be zero: 
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Solving this for c , we obtain the following non-trivial solution: 
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The first term in the right-hand-side accounts for the effect of phase change. Since 2cosh 2 2 1 0( (	 	 �
and sinh 2 2 0( (	 �  for  0( � , the phase change always reduces the growth rate. The second term 
includes the effect of buoyancy and surface tension. This term has a destabilizing effect when 

1/20 B(. . . For an extremely thin vapor layer ( 1( .. ), Eq. (35) can be further approximated as

2 1 2 31 1
(1 ) ( )

3
c B

F
O) ( ( (	� 	 
 	 
 .  (36) 
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One can see that the critical wavenumber is affected by ) , whereas the most unstable wavenumber 

remains unchanged as 1/ 2( / 2)d B( � . On the other hand, for a thick vapor layer, the most unstable 
wavelength increases as the phase change increases, as shown in Fig. 3. 

Figure 3. Effect of the evaporation on the most unstable wavelength 

4. CONCLUSIONS  

We have derived the dispersion relation for Rayleigh-Taylor instability of viscous fluids with heat and 
mass transfer. The vapor layer is initially in equilibrium with the liquid at the interface. The dispersion 
relation is given by Eq. (24). The phase change was shown to reduce the growth rate, i.e., stabilizing 
effect. 

The critical equation was obtained as Eq. (26). Two extreme cases were considered. For a thin layer of 
vapor, the critical equation was given by 

4 2 1
3

1

3
0

bg
k k


�
� ��

�
	 
 � .

There is a coupled effect of the vapor viscosity, phase change, and vapor layer thickness on the critical 
wavenumber. For a very thick layer of vapor, the critical equation was given by 

2 1 2( )
0

2
k

b g
k


 
 �
� �

 �

	 �
 .

The effect of the vapor layer thickness is weakened and both liquid and vapor viscosities affect the critical 
wavenumber. The critical wavenumber decreases with the magnitude of phase change. 

We also investigated the most unstable wavelength. For a thin layer of vapor, it was given by 
1/2

2
2d g

�0 1
�

� �
� � ��� �

 , 

and is insensitive to the degree of phase change. However, for a thick layer of vapor, the most unstable 
wavelength was given by 

1/2
3

2d g

�0 1
�

� �
� � ��� �

 , 

 and it increases with the degree of phase change. 
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