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ABSTRACT 
 
Motivated by qualification of the MEWA code for coolability analysis of debris beds formed during 
severe accidents of light water reactors, the present work presents a validation of the code against the 
experimental data obtained on the POMECO-HT facility for investigation of two-phase flow and heat 
transfer limits in particulate beds with various characteristics. The volumetrically heated particulate beds 
used in the POMECO-HT experiment are packed in various configurations, including homogeneous bed, 
radially stratification, triangular stratification, axial stratification, and multi-stratification. To investigate 
coolability enhancement by bottom-fed induced natural circulation, a downcomer is employed. Besides, 
the influence of the interfacial drag is also studied. The results show that simulation results of the MEWA 
code is overall comparable with the experimental data in term of dryout conditions of the particulate beds. 
For the 1-D top-flood case, the dryout heat flux is mainly determined by counter-current flow limit. While 
for certain cases the multidimensionality may help to break CCFL. Besides, the debris bed’s coolabiltiy 
can be significantly improved due to the natural circulation flow from the bottom induced by using 
downcomer. The interfacial drag affects the coolability by means of varying the pressure field inside the 
bed. For the top-flood case, the dryout condition deteriorates since the vapor and coolant flow reversely 
and thus the interfacial drag increases the flow resistance. Whereas for the bottom-fed case, the dryout 
heat flux rises remarkably when considering the interfacial drag, because the vapor and coolant flow in 
the same direction and the interfacial drag helps to pull coolant upward from the bottom. 
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1. INTRODUCTION 
 
During a severe accident of a nuclear power plant (NPP), the molten core materials may relocate either in 
the lower head of reactor vessel (in-vessel) or in the reactor cavity (ex-vessel), and contact the coolant, 
resulting in rapid quenching and fragmentation.  Subsequently, the particulate corium may settle down on 
available surfaces, forming a porous debris bed. To terminate and stabilize the accident progression, the 
debris bed need continuous cooling because of the decay heat generated within it. On the other hand, the 
debris bed is easier to be cooled than the molten corium pool since the porous nature of the bed is more 
accessible for coolant to penetrate through the pores of the bed and remove the internal heat by 
evaporation. In this process, the dryout heat flux (DHF), i.e. the maximum heat flux that can be removed 
from the bed without incipient dryout, is considered as the limiting criterion to assess the coolability of 
the debris bed. Therefore, the assessment of the coolability of debris bed and the prediction of DHF are 
paramount to the severe accident management strategy and safety margin evaluation.  
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3. MEWA CODE MODEL 
 
The MAWA code (previously called WABE-2D) [10, 13] is developed in the frame of the KESS code by 
IKE institute at Stuttgart University and its models have been integrated in the German system code 
ATHLET-CD. The code describes the transient boil-off and quenching behaviors of debris bed, and thus 
can be applied to assess the coolability of particulate bed during severe accident in a light water reactor 
(LWR). 
 
The MAWA code models the debris bed in two dimensions with cylindrical or Cartesian geometry using a 
quasi-continuum approach. Three separate phases, i.e. solid particles, liquid coolant (water) and gas 
(vapor), are considered. The solid particles are assumed to be a fixed matrix, while the fluid is treated as 
high-permeability porous medium (high porosity and large particle diameter) without separate model.   
 
The MAWA code solves the basic two-phase conservation equations for mass, momentum and energy. 
Particularly, for the momentum equations, the temporal and spatial derivatives of the velocities can be 
neglected under two assumptions that the dominating forces on the fluids are particle-fluid and the 
interfacial drag, and that the response of the velocity field to the pressure variations is instantaneous, 
yielding a simplified equations as: 
 

���� � ���	 
 �	�

�� 
 �	�

��                  (1) 
 

���� � ���	 
 �	��
������ �

�	�
������                  (2) 

 
for vapor and liquid respectively. The friction force between the fluid and solid particles (��	�� and ��	��) are 
modeled by using Ergun’s equation [14] for one-phase flow, and extended for the two-phase flow by the 
introduction of relative permeability and relative passability: 
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For the interfacial drag, Schulenberg and Müller [15] proposed an equation based on the experiment data: 
 

�	- � ./0�) � ��1� %�"
&2 ��� � ����+$	3+$	3     (5) 

 
where $	3 is the relative velocity given by 
 

$	3 � 4	

� � 4	�

���       (6) 
 
The capillary force in the form of pressure difference between vapor and pool (�5 � �� � ��) is also 
optionally considered in the momentum equation as a function of various parameters, including surface 
tension, contact angle, porosity and saturation. Several mostly used classic formulations for the frictional 
pressure drop of two-phase flow through porous medium are summarized in Table II.  
 
In the simulation using MEWA code, since the geometry of the six test beds are all axial-symmetric, only 
half of the bed is considered as the computational domain and discretized into approximately 103 nodes. 

3283NURETH-16, Chicago, IL, August 30-September 4, 2015 3283NURETH-16, Chicago, IL, August 30-September 4, 2015



For frictional model, only Reed model is used since Reed model is generally has a better agreement with 
the experiment data and is usually taken as a standard model with best adaptation [10, 16]. 
 
 
Table II. Formulations for the Friction Pressure Drop of Two-phase Flow through Porous Medium 

 
Model Parameters    
 �5 63 73 �-
Lipinski (1982) 89�) � ��:;<=

>�  
63?� � <@ 
63?� � �@ 

73?� � <@ 
73?� � �@ 0 

Reed (1982)  
63?� � <@  
63?� � �@  

73?� � <A 
73?� � �A 0 

Hu and Theofanous 
(1991) 0 

63?� � <@ 
63?� � �@ 

73?� � <B 
73?� � �B 0 

Schulenberg and 
Müller (1987) 0 

63?� � <@ 
63?� � �@ 

73?� � <A 

73?� � C �B? � D 0E.
0E)�F? � G 0E. 

�	- � ./0�) � ��1� %�"
&2 ��� � ����+$	3+$	3  

 
 
4. RESULTS AND DISCUSSIONS  
 
4.1.  MEWA Code Validation 
 
The Comparison of the experimental data and results predicted by MEWA code is shown in Fig. 4, in 
which the numbers over the columns indicate the relative error. The y-axis quantity for all the test beds 
except Bed-4 (triangular) is dryout heat flux (kW/m2), which is defined as the dryout power normalized 
by the cross-section area of the bed. While for Bed-4, the dryout power density (kW/m3) is used instead to 
characterize the dryout power level since the cross section area varies along the height.  It can be seen that 
the accuracy of the MEWA code predictions of the dryout power for various types of debris beds is 
overall satisfactory, with the maximum relative error within 16%. Therefore, generally speaking, MEWA 
code is applicable to predict the DHF for a particulate bed during severe accident scenario. However, it 
should also be noted that the MEWA predictions are somewhat overestimated compared to the experiment 
results.  
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whose is dryout power density instead. The numbers above the columns are relative error. 
Figure 4.  Comparison of Experiment Data and MEWA Code Prediction  

 
 

The dryout condition of the homogeneous bed, taking Bed-2 for example, is shown in Fig. 5. The liquid 
flood and quench the bed from the top while the vapor rise from the bottom in opposite direction. As the 
result, the dryout occurs near the bottom of the bed where the coolant has to penetrate the whole porous 
bed to reach, and the dryout heat flux is determined by CCFL.  The predicted DHF of Bed-2 is roughly 
2.2 times higher than Bed-1, which can be expected since the particle diameter and the porosity of Bed-2 
are both larger, leading to a significant reduction of the frictional resistance [9].  
 
 

(a) Particle temperature and liquid velocity  (b) void fraction and vapor velocity 
Figure 5. Dryout Condition of the Homogeneous Bed (d=3.0mm) 

 
 
Fig. 6 shows the particle temperature and vapor velocity of Bed-3 (radially stratified). The DHF of Bed-3 
is comparable with the homogeneous Bed-2 packed with 3.0mm spheres, and much higher than the 
homogeneous Bed-1 filling with smaller diameter (1.5mm) spheres, which implies that the DHF of Bed-3 
is dominated by the side column packed with larger size particles. This is because the side column 
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provides escape path for the vapor generated in the middle part due to the relatively smaller frictional 
resistance (Fig. 6b), resulting in more ingression of coolant from the top (Fig. 6a). Besides, the predicted 
location of dryout is in the upper part of the region with larger size particles, which also coincides with 
the observation of the experiment.  
 
 

(a) Particle temperature and liquid velocity  (b) void fraction and vapor velocity 
Figure 6. Dryout Condition of Radially Stratified Bed-3 

 
 
Fig. 7 shows the dryout condition of Bed-4 (triangular), from which it can be found that the dryout occurs 
in the inner and upper part of the triangular bed. Besides, the experiment also demonstrated that the 
dryout power density is much larger (69%) than a homogeneous bed which has a same volume, particle 
size and porosity with the triangular bed [11].  The reason is that the multidimensional packing fashion 
promotes the ingression of coolant from the sides and the bottom in addition to the top, so that the 
limitation of counter-current flow is removed which is favorable for the coolability. 
 
As shown in Fig. 8, the dryout condition of Bed-5 (horizontally stratified) is similar to the homogeneous 
bed. In contrast to the radially stratified bed (Bed-3) whose DHF is dominated by the region with larger 
size spheres, the DHF of Bed-6 is much closer to that of the homogeneous bed with smaller size particles 
(Bed-2). The reason is that is the coolant floods from the top, while the region with larger size (3.0mm) 
particles is located beneath the region with smaller size (1.5mm) particles, which can’t provide additional 
escape path for vapor to avoid CCFL.  
 

Figure 7. Particle temperature and liquid 
velocity of Triangular Bed-4 

Figure 8. Particle temperature and liquid 
velocity of Horizontally Stratified Bed-5 

0.0 0.025 0.05 0.075 0.1
Radius [m]

0.0

0.25

0.5

0.75

1.0

H
ei

gh
t [

m
]

373
374
375
376
377
378
379
380
381

Particle Temperature [K]

0.001

Superficial Liq. Vel. [m/s]

0.0 0.025 0.05 0.075 0.1
Radius [m]

0.0

0.25

0.5

0.75

1.0

H
ei

gh
t [

m
]

0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

Void [-]

3

Gas Velocity [m/s]

0.0 0.025 0.05 0.075 0.1
Radius [m]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H
ei

gh
t [

m
]

373
374
375
376
377
378
379
380
381
382

Particle Temperature [K]

0.0007

Superficial Liq. Vel. [m/s]

0.0 0.025 0.05 0.075 0.1
Radius [m]

0.0

0.1

0.2

0.3

0.4

0.5

H
ei

gh
t [

m
]

374
375
376
377
378
379
380
381
382
383

Particle Temperature [K]

0.0001

Superficial Liq. Vel. [m/s]

3286NURETH-16, Chicago, IL, August 30-September 4, 2015 3286NURETH-16, Chicago, IL, August 30-September 4, 2015



Fig. 9 shows the dryout condition Bed-6 featuring multidimensional stratification. The location of dryout 
is predicted in zone4, the upper left region where particles with diameter of both 3.0mm and 1.5mm are 
mixed, which is consistent with the experiment observation.  From Fig. 9 it is found that zone1~3 are 
accessible for coolant either from top or from side, while upward vapor accumulates in zone4 which 
prevent the ingression of coolant from top.  
 
 

(a) Particle temperature and liquid velocity  (b) void fraction and vapor velocity 
Figure 9. Dryout Condition of Multi-Stratified Bed-6 

 
 
4.2.  Natural Circulation Driven Coolability 
 
To investigate the so-called natural circulation driven coolability (NCDC), a downcomer is employed in 
POMECO-HT facility, though which the coolant from the top pool is accessible to the bottom of the 
debris bed and can flow upward driven by the buoyance. Two different sizes, 8mm and 12mm, of the 
inner diameter of the downcomer are applied in the experiment. 
 
Fig. 10 shows the comparison of the MEWA predictions of DHF against experimental data for 
homogeneous bed packed with 1.5mm spheres (Bed-1) when the downcomer is considered, as well as the 
case without downcomer. The numbers above the columns are the relative error. It can be seen that 
generally the results predicted by MEWA match well with the experiment, and still somewhat 
overestimated. Moreover, compared to the top-flooding case without downcomer, the experimental dryout 
heat flux rises up to 19% with 8mm-ID downcomer and 34% using 12mm-ID downcomer, which 
indicates an evident enhancement of the coolability of the debris bed. This is because the downcomer 
provides natural circulation of the coolant from the bed bottom in addition to the top flooding, resulting in 
co-current flow of the vapor and liquid inside the bed (cf. Fig. 11). Therefore the limit of counter-current 
flow is broken, and the coolability is primary determined by the natural circulation flow rate instead.    
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Figure 10. Dryout Heat Flux with Downcomer (Bed-1) 

 
 

(a) Particle temperature and liquid velocity  (b) void fraction and vapor velocity 
Figure 11. Dryout Condition of Homogeneous Bed (d=1.5mm) considering downcomer 

 
 
4.3.  Interfacial Drag 
 
The interfacial drag between the vapor and the liquid may affect the pressure field inside the debris bed, 
and further, the dryout heat flux. Schmidt [13] reported that the maximum coolable bed power increase 
remarkably if water access from below is enable, even only a minor fraction of the lower bound is directly 
connected to the coolant pool. Schäfer and Lohnert [17] found that the interfacial drag has an opposing 
effect on the coolability for different geometric configuration of the debris bed. 
 
Among the commonly used models to predict pressure drop listed in Table II, only Schulenberg and 
Müller model takes account the interfacial dray in the momentum equation. To study the influence of the 
interfacial dray, two cases, i.e. top flooding and bottom injection, are considered in the present work. In 
the case of top flooding, the vapor and coolant flow reversely, while in the bottom injection case the vapor 
and coolant flow in the same direction. The interfacial drag is considered in the simulation by using 
Schulenberg and Müller model option in the MEWA code, and the injection of coolant from the bottom is 
modeled by assuming a hydrostatic pressure difference between the bottom and the top of the bed [10]. 
 

0.0 0.025 0.05 0.075 0.1
Radius [m]

0.0

0.25

0.5

0.75

1.0

H
ei

gh
t [

m
]

372
374
376
378
380
382
384
386
388
390
392
394
396
398

Particle Temperature [K]

0.02

Superficial Liq. Vel. [m/s]

0.0 0.025 0.05 0.075 0.1
Radius [m]

0.0

0.25

0.5

0.75

1.0
H

ei
gh

t [
m

]

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Void [-]

2

Superficial Gas Vel. [m/s]

Time t = 592.35s

3288NURETH-16, Chicago, IL, August 30-September 4, 2015 3288NURETH-16, Chicago, IL, August 30-September 4, 2015



Fig. 12 depicts the dryout heat flux for both top-flooding and bottom-injection cases with and without the 
consideration of the interfacial drag. The pressure variation along the axial direction is shown in Fig. 13.  
Compared to the case without interfacial drag, the DHF slightly decreases (8.57%) for the top-flooding 
case, while significantly rises (63.89%) for the bottom-injection case when interfacial drag is included in 
the momentum equation. The reason is that for the top-flooding case, the vapor and liquid flow in the 
opposite direction. As the result, the inclusion of the interfacial drag increases the flow resistance, which 
hinders the escape of vapor and the ingression of coolant. The pressure at the bottom is reduced due to the 
growth of the frictional loss (Fig. 13a), which also contributes to the evaporation and thus the occurrence 
of dryout. For the bottom-injection case in which the vapor and liquid flow in the same direction, the 
interfacial dray helps to pull the coolant from the bottom. From Fig. 13b it can be seen that the pressure 
gradient is much larger when the interfacial drag is taken into account, which also can enhance the 
upward flow of the coolant.  
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Figure 12. Comparison of DHF Regarding Interfacial Drag 
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Figure 13. Pressure Profile along the Axial Direction 
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5. CONCLUSIONS  
 
Aiming at validating the MEWA code for analyzing the coolability of particulate bed during severe 
accidents of light water reactors, the present work compares the results predicted by the code with the 
experimental data obtained from the POMECO-HT facility. Various configurations of the debris bed 
regarding the particles size and distribution are selected for validation, including homogeneous, radially 
stratified, triangular stratified, axial stratified, and multi-stratified debris beds. The results show that the 
MEWA code is applicable to predict the dryout condition for a debris bed during severe accident since the 
accuracy of prediction is satisfactory. However, it should also be noted that the MEWA calculation results 
are somewhat overestimated. For the 1-D top-flood case (e.g. homogeneous bed), the dryout heat flux 
mainly depends on counter-current flow limit. While for certain cases like radially stratification, the 
multidimensionality may help break CCFL by enhance the ingression of coolant from bottom or sides. 
 
To investigate the effect of bottom-fed induced natural circulation, downcomers with different diameters 
are applied. The MEWA code calculating results match well compared to the experiment data. It is found 
that the coolability of debris bed can be enhanced when a downcomer is used due to the upward flow of 
coolant from the bottom that removes the counter-current flow limit.   
 
The interfacial drag affects the coolability by means of varying the pressure field inside the bed. Its 
influence is studied by using the Schulenberg and Müller model option in the code instead of the 
commonly used Reed model. Both the top-flood and bottom-injection cases are considered, and the 
results show that the influence of interfacial drag differs. For the top-flood case, the dryout heat flux is 
slightly reduced since the interfacial drag increases the flow resistance due to the counter-current flow of 
vapor and coolant. The reducing pressure at the bottom due to the increase of the frictional loss also 
contributes to the occurrence of dryout. While for the bottom-fed case, the dryout heat flux rises 
remarkably when considering the interfacial drag, because the vapor and coolant flow in the same 
direction and the interfacial drag helps to pull coolant upward from the bottom. The pressure difference 
between the bottom and the top of the bed also enlarges by the interfacial drag, which can further enhance 
the upward flow of the coolant. 
 
NOMENCLATURE 
 
>   particle diameter (H) 
���   volumetric frictional drag force  between solid particle and vapor (I J@K ) 
���   volumetric frictional drag force  between solid particle and liquid (I J@K ) 
�-   volumetric interfacial drag force  between solid vapor and vapor (I J@K ) 
�   gravitational constant (J <LK ) 
M   superficial velocity (J <K ) 
6   permeability (JL) 
63  relative permeability (-) 
�   pressure (NO) 
< � ) � �  saturation (-) 
 
Greek symbols 
�  void fraction (-)  
�   porosity of debris bed (-) 
7  passability (J)  
73  relative passability (-) 
=  contact angle (rad) 
P  dynamic viscosity (QR S <) 
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�  density (T� J@K ) 
9  surface tension (I JK ) 
 
Subscripts 
i  interface 
l  liquid 
g  gas, steam 
r  relative 
c  capillary force 
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