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ABSTRACT 
 
A 20MWth Transportable small reactor with Fluoride-salt-cooled High-temperature Reactor (TFHR) 
technology is proposed by Massachusetts Institute of Technology for off-grid applications. In this paper, 
the preliminary thermal-hydraulic analyses and improvements based on 1/12th TFHR full core model have 
been performed using 3-D computational fluid dynamics (CFD). Three practical considerations that may 
challenge the TFHR limiting safety and system settings (LSSS) are evaluated in conservative manners. 
These include 1) helium gap between fuel compact and graphite block, 2) thermal property degradations 
of graphite matrix due to neutron irradiation, and 3) actual power profile with non-uniform distribution. 
The conservative approaches lead to insufficient margin between the normal operating conditions and the 
safety limits. Furthermore, additional measures, including bypass cooling and flow re-distribution, are 
made to improve the thermal-hydraulic safety of the TFHR. Overall, a more flattened temperature 
distribution with the lower peaking temperature of fuel and coolant across the TFHR core has been 
achieved. No thermal-hydraulics limit is exceeded for the operating condition of 20% over-power, i.e., 
with 24 MWth. 
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1. INTRODUCTION 
 
There is a potential small reactor market for Antarctic bases, remote mining sites, container ships, military 
bases and other off-grid applications. In many cases, it is desirable that the reactor has a compact design 
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and can be easily transported by a truck, or a train or an airplane. The cost of electricity and heat from 
conventional sources for remote locations is often very high and therefore a compact nuclear reactor 
design is an attractive option in spite of higher capital cost per kW than a conventional nuclear reactor. 
The FHR would be sized for the average demand resulting in a much smaller, more transportable, and 
more economic reactor compared to other nuclear energy technologies [1]. Smaller reactor sizes often 
allow for major simplification of systems, especially safety systems. As a result, a more compact core 
configuration can be achieved with the FHR technology. Within the framework of FHR project, a 
conceptual design of 20 MWth compact Transportable FHR (TFHR) with 18-month, or 550 effective full 
power days (EFPDs), one-through fuel cycle is on-going at MIT [2, 3]. This paper aims to evaluate the 
system operation safety and provide a licensing basis, emphasis being placed on the thermal-hydraulic 
features of the TFHR at the steady-state. 

 
In the prismatic nuclear reactors, the complex geometry of fuel blocks brings certain challenges for 
accurate prediction of the fuel temperature. Hence, many researchers adopt simplified computational 
models for the analyses and designs of prismatic reactors. These models are the equivalent cylinder model 
and the unit cell model.  The equivalent cylinder model, transformed from unit cell model by preserving 
the volume of each part, has been widely adopted in the thermal-fluid analyses of prismatic fuel by hand 
calculation or system analysis code [4, 5]. More accurate predictions have been conducted by solving a 
multi-dimensional heat conduction based on unit cell model that consists of two equivalent fuel rods and 
one coolant channel [6, 7] (see a unit cell in Fig.1). The unit cell model can be used to thermal-hydraulics 
analyses of some local area of prismatic core based on reasonable assumptions. These two simplified 
approaches are very helpful to understand basic aspects of heat transfer rapidly due to its largely reduced 
computational efforts, especially when applied to transient behavior study. However, they are only 
acceptable for a heat transfer unit of a full prismatic fuel block.  They cannot consider the mutual heat 
transfer of different unit cells and the bypass flow between fuel blocks, which may practically affect the 
fuel temperature. 
 
During the recent decades, owing to the remarkable progress in computational fluid dynamics (CFD) 
technology, as well as the performance of workstation, using 3-D CFD codes becomes more popular in 
thermal-hydraulics analyses of prismatic core nuclear reactors. Cheng et al. use the commercial software 
CD-adapco STAR CCM+ to study the effects of asymmetric power generation on thermal-hydraulics 
characteristics of FHTR [7]. They modeled a unit cell of TFHR in detail and assumed four types of power 
distributions. Tak et al. numerically analyzed a heat transfer with the 1/12th prismatic fuel block of a 
VHTR using a commercial CFD code, ANSYS CFX [8]. The effects of bypass gap flow and the radial 
power distribution are investigated in this study. It has been found the bypass flow has a major impact to 
the VHTR thermal-hydraulics. Furthermore, Travis et al. numerically investigated 1/6th core of VHTR 
with 3-D thermal conduction in fuel compact and graphite reflector coupled to 1-D helium flow model in 
order to reduce computation time and memory requirements [9]. They considered helium intestinal bypass 
flow in detail and also applied cosine and uniform axial power profiles in their model. It has been 
reported the accurate prediction of fuel temperature is largely dependent on the selection of helium heat 
transfer correlations. 
 
There are also many other CFD efforts and publications corresponding to the prismatic reactor core, but 
most of them adopt helium as coolant and focus on the flow and heat transfer within fuel assembly not for 
full core level. More importantly, little work has been done to the effect of some practical considerations, 
such as gas clearance between fuel compact and graphite matrix, graphite thermo-physical properties 
degradation, and power deformation, which have considerable challenges to the TFHR LSSS limits. In 
the present paper, the above mentioned three considerations have been studied in conservative manners. 
The thermal hydraulic design features of 1/12th prismatic TFHR core have been numerically evaluated 
from the viewpoint of reactor safety. The detailed temperature distribution and the heat transfer 
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coefficient have been obtained throughout the core. Two measures have been adopted to flatten the 
temperature distribution and lower the peak fuel temperature and coolant temperature.  
 
2. TFHR DESIGN AT MIT 
 
The concept of advanced TFHR is first proposed at MIT to meet potential government missions for ships 
and remote sites in 2013 [10]. Thereafter, Sun and Hu embody the prismatic core TFHR from the 
perspective of neutronics and have conducted the fuel cycle optimization using MCODE [2]. The primary 
coolant adopts a binary molten salt system of the 66.7% 7LiF-33.3% BeF2 (FLiBe) that is used 
successfully as a matrix salt for the MSRE fuel salt and performed excellently in those functions for the 
life of the experiments [11]. In addition, similar to the HTRs and VHTRs, TFHR adopts TRISO fuel 
particles, which are embedded randomly in a cylindrical carbonaceous matrix to form a fuel compact with 
packing fraction (PF) of 0.35. Burnable poison particles (BPPs) made of B4C, which have similar layout 
as TRISO fuel particles but with poison materials as kernel, are adopted as key measure for minimizing 
the reactivity swing induced by fuel depletion and also prolonging the fuel cycle. They are randomly 
distributed in the fuel compacts. Stacks of fuel compacts are then inserted into hexagonal graphite matrix 
to construct a fuel blocks. Due to fabrication issue of fuel compacts, a very small gap exists between the 
fuel compact and graphite matrix. Fig. 1 shows the geometry structure of TFHR’s fuel block. Plots (a) is 
perspective of TRISO fuel particle, plots (b) is the horizontal schematic of fuel compact, and plots (c) is 
the view of prismatic fuel block. 
 
 

 
Figure 1. The schematic of TFHR’s fuel block. 

 
 
The top view and elevation view of the reactor core are shown in Fig. 2. The proposed 20 MWth TFHR is 
a hexagonal prism that mainly consists of four parts: central instrument channels (including central down-
comer and control rods), active zone, replaceable graphite reflector (including safety rods) and permanent 
beryllium reflector. The active zone contains 18 fuel blocks, where the inner ring has 6 blocks and outer 
ring has 12 blocks (see Fig. 2(a)). At the central position of core, there are six control rods with 
independent control drive systems. There are also 12 safety rods distributing in the core periphery. Above 
and below the active zone, it has upper and lower graphite reflectors with coolant channels in order to 
enhance neutron economy and maintain flow hydro-dynamically developed (see fig. 2(b)). The outermost 
layer of core is the easily-transported and assembled beryllium reflector. 
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Figure 2. Horizontal and verical cross-section of TFHR. 

3. NUMERICAL ANALYSIS 
 
There is a geometrical symmetry for the prismatic layout. Accordingly, the 3-D thermal hydraulics 
analysis is carried out using a 1/12th core sector (see Fig. 1). The 1/12th core consists of 162 equivalent 
coolant channels (including 13 in half-channels) and 324 equivalent fuel rods (including 6 in half-
channels). With use of appropriate of flibe, the Reynolds number (Re) is calculated to be 638 based on the 
assumed average flow rate of 0.043 kg/s per coolant channel. The flow in active zone is thus in laminar 
regime. 
 
Different components of fuel blocks, outer graphite reflector and beryllium reflector, are included in the 
core model. STAR CCM+ could generate meshes for each component separately. They are jointed 
together thereafter. The meshing for the fuel block is the more important than that for comparing to the 
other parts. In this paper, the polyhedral and prism layer meshers are used to generate a layer mesh. The 
meshes along the flow direction are generated with extruder mesher. In order to keep a reasonable mesh 
number without consuming too much computational time, sensitivity study has been carried out by testing 
five cases (A, B, C, D and E) with different meshing schemes for a 1/6th fuel block. Key thermal-
hydraulic parameters, including outlet coolant bulk temperature Tb, average wall temperature Tw,avg and 
the maximum fuel temperature Tfuel,max, are compared in Table I. 
 
 

Table I. Mesh sensitivity study 
 
Case A(ref) B C D E 
Mesh Number (million) 9.84 6.22 3.65 1.05 0.7 
Base Size in Coolant(mm) 0.8 0.8 0.8 1.2 2.0 
Base Size in Fuel & Graphite 
(mm) 

1.0 3.0 5.0 8.0 10.0 

Axial size (mm) 8.5 8.5 8.5 26.0 26.0 
Tb (K) 972.8 972.7 972.2 972.1 969.6 
Tb Relative Error, % - 0.1% 0.6% 0.7% 3.2% 
Tw,avg (K) 1195.4 1195.0 1193.0 1192.3 1183.4 
Tw,avg Relative Error, % - 0.4% 2.4% 3.1% 12% 
Tfuel,max (K) 1364.9 1364.4 1362.0 1361.3 1347.0 
Tfuel,max Relative Error,% - 0.5% 2.9% 3.6% 17.9% 

P� (Pa) 443.5 443.8 444.2 444.0 452.6 
 
 
As seen in Table I, the mesh number decreases from Case A (9.84 million) to Case E (0.7 million). The 
compared parameters remain largely unchanged except for Case E, which has a notable discrepancy to 
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other cases. It is thus clear that Case D is the optimal choice for full core simulation with consideration of 
both computation time and accuracy. The detailed mesh scheme is shown in Fig. 3. 
 
Reliable thermo-physical properties of flibe are of great importance. Ref [5] recommended flibe thermal 
properties on the basis of existing experimental data and fitting equations on fluoride salts. The thermal 
properties of other components, such as graphite, fuel compact, beryllium reflector and helium are 
adopted from the design report of very high and high temperature gas cooled reactors (VHTRs or 
HTGRs) [6].  
 

 
Figure 3. Mesh details of 1/12th TFHR core (Case D). 

 
 
Once the numerical mesh grid is generated and employed, performing the thermal-hydraulics analyses is 
relatively straightforward. The parametric input consists of inlet temperature, mass flow rate of FLiBe in 
each coolant channel and fission power distribution. The inlet temperature is fixed at 873.15 K with total 
mass flow rate of 6.98 kg/s. The outlet is set to be a pressure outlet with a relative pressure of zero Pa for 
the purpose of fast convergence. The heat loss during the reactor operation is neglected. Therefore, the 
boundaries outside the TFHR core are set to be adiabatic no-slip wall or symmetry. The average 
volumetric power density in the fuel compact is 31.25 MW/m3 for the base case. 
 
Since there is no licensing experience for such a transportable small reactor featured with multi-functions 
at remote site, the LSSS of the 20MWth FHTR, aiming to test fuel and material in realistic reactor 
environments, is adopted in this paper as thermal constraints for TFHR. The Nuclear Regulatory 
Commission (NRC) defines safety limits (SL) and limiting safety system settings (LSSS) for licensing. 
Generally, the LSSS will ensure that automatic protective action will correct the abnormal situation 
before a safety limits is exceeded [12]. As a result, the LSSS defines the operating region of the nuclear 
reactor.  The thermal boundary provide safe margin over the designed operating region to ensure the 
integrity of the structural material and fuel. Four thermal limits are derived from the materials used in 
FHTR [5], as tabulated in table II. 
 
 

Table II. LSSS criteria of FHTR 
 

Constraints Value Material 
Minimum Inlet temperature, Tin 783 K FLiBe 
Maximum outlet bulk temperature, Tout 993 K Hastelloy N 
Maximum coolant temperature, Tc,M 1473 K FLiBe 

6935NURETH-16, Chicago, IL, August 30-September 4, 2015 6935NURETH-16, Chicago, IL, August 30-September 4, 2015



Maximum fuel temperature, Tf,M 1573 K TRISO 
 

 
4. RESULTS AND DISCUSSION 
 
4.1. Thermal-hydraulic Analysis of 1/12th TFHR Core 
 
Our previous study [13] has validated the CFD models of FLiBe flow and heat transfer. In this section, 
the thermal-hydraulic analysis is performed in terms of calculating the temperature distributions of the 
1/12th TFHR core. The effects of gas clearance between fuel compact and graphite matrix, graphite 
thermo-physical properties degradation and power deformation that may challenge the TFHR LSSS are 
then evaluated in a conservative manner to find the deficiency of the current design. 
 
4.1.1. Results for the base case 
 
The results of the thermal-hydraulics analyses for the TFHR base case are presented in Fig. 4. With 
uniform power profile, the temperature distribution results at the outlet section are presented. Overall, the 
temperature distribution is largely flat throughout the entire active zone. Hot spots are found at the joint 
corners of the fuel blocks, where there are less coolant channels in these regions. The temperature of the 
corresponding fuel rods peaks at 1358.6 K, which is about 160 K higher than volumetric-averaged fuel 
temperature. The hottest coolant channel is located in the same region, close to fuel rods with the highest 
temperature. As mentioned earlier, due to high viscosity and low thermal conductivity of FLiBe, the flow 
condition in coolant channel is in the laminar regime, so that a relatively cold region (accounts for 8% of 
total area) exists in the coolant channel (see Fig. 4). The highest temperature of coolant reaches 1320.5 K 
adjacent to the heated wall. 
 
 

 
Figure 4. Outlet temperature distribution of 1/12th TFHR core for base case. 

 
 

4.1.2. Effects of gas clearance, graphite properties degradation and power deformation 
 
1) Gas clearance between fuel compact and graphite matrix 
 
There is typically a small gas gap exists between the fuel compact and graphite matrix. On the one hand, 
it is due to certain limitations during fuel block assembling. On the other hand, the gas volume could help 
retain the radioactive substances released from fuel compacts. The gap width of Liquid-Salt-cooled Very 
High-Temperature Reactor (LS-VHTR) designed by ORNL (i.e. 0.127 mm) is adopted in this study, since 
the LS-VHTR has similar fuel block design to the current TFHR. In reality, the thermo-physical 
properties in clearance, which vary as the fuel reacts and daughter constituents fill the space, cannot be 
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easily concluded. It thus has great difficulties in direct simulating this region at full core level. For the 
sake of simplicity, the clearance assumed with full of helium is treated as an empirical contact thermal 
resistance in 3-D simulation, with its thickness added to the fuel. The radiation and natural convection are 
neglected due to small temperature drop across fuel-graphite interface based on the following results. 
 
2) Graphite thermo-physical properties degradation due to neutron irradiation 
 
It is a well-known issue that the neutron irradiation could remarkably deteriorate the thermo-physical 
properties of graphite. The corresponding thermal-hydraulic effect is thus carefully evaluated in the 
present paper. According to the study of Maruyama and Harayama [14], the variation of the graphite 
thermal conductivity becomes very small at high temperature (above 1350 K), but there still remains a 
large thermal conductivity difference between irradiated and unirradiated graphite. This difference does 
not increase after the fast neutron fluence exceeds 3×1025 n/m2. For the TFHR, the calculated peak fast 
neutron fluence is 3.2×1025 n/m2 corresponding to the end-of-life fuel cycle state. Thus, the thermal 
conductivity ratio of irradiated to unirradiated graphite is assumed as a constant. The ratio of 0.67 is 
adopted for conservative considerations [4]. 
 
3) Power deformation based on 3-D neutronic outputs 
 
Many thermal-hydraulic studies for the prismatic reactors are based on uniform power density, or fitted 
cosine power correlation. These may result in a more flattened the temperature distribution and a lower 
the maximum temperatures of fuel and coolant (see Fig. 4). It is thus not a conservative approach for 
nuclear reactor thermo-condition analyses. In this paper, a full core level power profile based on 3-D 
neutronic outputs is coupled to the 3-D CFD model, in order to predict the best-estimate temperature 
distribution. The calculated power profile at the Beginning Of Life (BOL) is adopted for the non-uniform 
case, since the highest power local peaking factor occurs, when the control rods are inserted at their 
lowest positions. This, in turn, might lead to a significant distortion of the temperature distribution. Fig. 5 
shows the distribution of power peaking factors in the TFHR. The maximum power factor occurs at 
outermost of the active core, peaking at 2.18. It is followed by a high power factor region across the 
interface between active core and outer graphite reflector. The minimum power factor, as low as 0.24, 
occurs at top central side of active core due to the nearby inserted control rods.  
 
 

 
Figure 5. Power factor distribution of TFHR core. 
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For convenience, the case with consideration of all above three practical concerns is named as the 
“limiting case”.   Fig. 6 presents the outlet temperature distribution of 1/12th TFHR core for the limiting 
case.  It can be seen that a significant temperature change occurs across the entire outlet compared to the 
base case (as shown in Fig. 4). The hot spots shift towards core periphery due to the higher power peaking 
factors in this region (fpeak=1.6~2.2, see Fig. 8), leading to a wider temperature range, from 1147 K to 
1479 K. In addition, the higher temperature in the core periphery leads to higher coolant and reflector 
temperature (1400 K and 1370 K, respectively). Fig. 7 compares the temperature distribution between the 
base case and the limiting case at the P1 symmetry plane (defined in Fig. 6). Compared to the base case, 
the peak temperature relocates from the outlet to the upper middle part of the core due to the deformed 
power profile (see Fig. 5., The peak temperature in the limiting case is notably higher by ~205 K. 
Nevertheless, this is still lower than the maximum allowed TRISO particle operating temperature of 1573 
K. Furthermore, no sub-cooled boiling of the coolant is anticipated to occur, since no liquid-wall interface 
temperature is found to reach the flibe boiling limit of 1473 K. 
 
 

 
Figure 6. Outlet temperature distribution of 1/12th TFHR core for limiting case. 

 
 

 
Figure 7. Temperature distributions at P1 symmetry plane for base case (left) and limiting case 

(right). 
 
 
The details about separating the individual effects of three practical considerations along the L1 line are 
illustrated in Fig. 8. Compared to the effects of helium clearance and graphite property degradation, the 
non-uniform power density has more remarkable influence on thermal-hydraulic characteristics of the 
TFHR, leading to a larger temperature fluctuation throughout the entire core. The existence of helium 
clearance just raises the fuel compact temperature by 30 K in average. For effect of graphite thermal 
properties degradation due to neutron irradiation, the temperature in the active zone is generally increased 
by ~ 10 K. The insignificant effect can be explained by two reasons. The first is that higher thermal 
conductivity of graphite (40 W/m-K) after intensive neutronic irradiation can be found in high 
temperature condition [4]. The second is that the heat transfer length (about 8 mm) between fuel compacts 
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and coolant channels is short. The local enlarged view in Fig. 8 shows that for high temperature region, 
the temperature rise due to the deformed power profile accounts for 55-65% in total fuel temperature 
increase, while the effects of helium clearance and graphite properties degradation contribute only about 
20% and 10 %. It is also noteworthy that all the practical considerations have little effect on the FLiBe 
temperature at the central part of coolant channel; whereas the temperature adjacent to the wall is affected 
significantly. 
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Figure 8. Effects of gas clearance, graphite properties degradation and power deformation on 

temperature distribution along the L1 line. 
 
 

According to the FHTR LSSS Criteria, the key thermal-hydraulic parameters comparison of the base and 
limiting cases are listed in Table III. The temperature margins for the maximum fuel and coolant 
temperatures are reduced from 214.4 K to 9.8 K and 143.3 K to 16.3 K, respectively. The TFHR design 
may not be able to meet all the safety requirements; if the 20% overpower condition (LSSS) is considered. 
At the next step, some measures will be taken to lower the maximum fuel and coolant temperatures and 
flatten the temperature distribution throughout the core. 
 
 

Table III. Key thermal-hydraulic parameters of different operating conditions 
 

LSSS limits 
(K) 

Maximum fuel temperature  Maximum coolant temperature  
Calculated 

results 
Thermal limit Temperatur

e margin 
Calculated 

results 
Thermal 

limit 
Temperatur

e margin 
Base case 1358.6 1573 214.4 1329.7 1473 143.3 

Limiting case 1563.2 1573 9.8 1456.7 1473 16.3 

 
 
4.2. Improvements with Use of Thermal-hydraulic Measures 
 
1)  Bypass cooling at core periphery 
 
It has been recognized that the bypass flow in the interstitial gaps between the prismatic fuel blocks in a 
VHTR core is inevitable. The gaps between fuel blocks are initially present because of the manufacturing 
tolerances, but their width varies with the fuel burn-up due to graphite swelling by neutron irradiation. 
According to the study of Boyce et al [9], the bypass flow could help in mitigating the hot spots at the 
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edge of fuel block. The bypass flow gaps are thus adopted to lower the maximum fuel temperature and 
coolant temperature for the TFHR, which has peak temperatures at the core periphery (see Fig. 6). The 
gap width of 5mm (VHTR design parameter) is employed. The coolant flow rate in the gap is set to 11% 
of total mass flow rate according to 3-D simulation results in Ref [9]. It should be noted that only the gaps 
adjacent to the core periphery are directly simulated. The gaps between fuel blocks are neglected in order 
to save computational resource. The former accounts for 42% of the total bypass flow.  Fig. 9 shows the 
geometry and meshing details of the interstitial gap. 
 

 
Figure 9. Geometry and meshing of bypass gap. 

 
 

2)  Coolant mass flow distribution 
 
As presented in Fig. 2, the TFHR adopts the central coolant down-comer as the initial entrance to reactor 
core instead of conventional annular down-comer. This is mainly to make reactor core as small as 
possible, thus keeping TFHR more easily-transported. The improvement of mass flow distribution would 
flatten the temperature distribution throughout the active core and in turn lower the maximum 
temperatures. In this paper, three different heights of lower coolant plenum (0.3m, 0.4m and 0.5 m) are 
preliminary studied. There are other factors may affect the flow distribution of the TFHR, including the 
shape of plenum, orifice plates and other internal components. However, taking all these factors into 
consideration is not practical with use of CFD method and they are clearly beyond the scope of the 
present research.  It should also be noted that the effect of heat transfer on flow distribution is neglect for 
simplicity.  Fig. 10 presents the comparison of mass flow distribution among different heights of lower 
plenum. The numbers at x-axis represent the coolant channels defined in Fig. 9. It is found that the lower 
plenum of 0.3 m in height is more beneficial than those of 0.4 m and 0.5 m. The mass flow fluctuation is 
almost within 10% of nominal flow per channel, which shows good uniformity compared with other 
heights of lower plenum. More importantly, the mass flow in the edge of outer ring is a little higher than 
the nominal flow. This would be desirable for cooling the high temperature region at the core periphery 
(Fig. 6). Overall, the flow distribution from 0.3m height of lower plenum is adopted for the remaining 
study in this paper. 
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Figure 10. Mass flow distribution at different height of lower plenum. 

 
 

With improvements of bypass cooling and flow distribution, the final temperature distributions of the 20 
MWth TFHR core is presented in Fig. 11. Due to the existence of bypass flow at the core periphery (see 
Fig. 9) and higher allocated mass flow rate (see Fig. 10) in the same region, temperature peaks move 
towards the core center and the temperature distribution becomes more flattened, as compared with Fig. 6. 
The maximum temperatures of fuel compact and coolant are reduced from 1563.2 K and 1456.7 K to 
1403.5 K and 1302.5 K, respectively. In addition, due to the low thermal conductivity of FLiBe and the 
laminar flow in bypass channel, little heat is transferred from active core to the outside reflectors. It leads 
to a much lower temperature in the outside reflectors. This, in turn, would improve the energy economic 
of TFHR and extend the operating lifetime of the permanent reflector. 
 
 

 

(a) Outlet temperature distribution 
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(b) Axial temperature distribuion at P1 symmetry plane 

Fig. 11 Temperature distributions of 1/12th TFHR core after improvements 
 
 

Fig. 12 shows more details on temperature improvents at the hottest channel. Due to the control rod 
insertion, the fuel compact and graphite temperatures peak at 0.85 m height of reactor core; whereas the 
coolant bulk temperature has a linear increase for obvious reasons. Compared with the limiting case, the 
volumetric-average temperatures for fuel and graphite decrease by 156 K and 127 K respectively. As a 
consequence, it leaves a larger temperature margin. Overall, the improvements of bypass cooling and 
mass flow distribution play a positive role for safety operation of the TFHR. 
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Fig. 12 Temperature comparison between unimproved and improved cases at hottest channel 

 
 

In order to meet the conventional licensing requirements, the designed nuclear reactors should experience 
at most 20% over-power operation scenario [12] and all key thermal-hydraulic parameters should be 
within the LSSS limits. Table IV lists key thermal-hydraulic parameters of different operating conditions. 
It can be seen that there is still a relative large temperature margin for the fuel compact and FLiBe for 
20% over-power condition. Overall, the current study shows the preliminary TFHR core design is 
practical and feasible from the thermal-hydraulic viewpoint. 
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Table IV. Key thermal-hydraulic parameters of different operating conditions 
 

LSSS limits 
Maximum fuel temperature (K) Maximum coolant temperature (K) 

Calculated 
results 

Thermal 
limit 

Temperature 
margin 

Calculated 
results 

Thermal 
limit 

Temperature 
margin 

Limiting case 1563.2 1573 9.8 1456.7 1473 16.3 

Improved case 1422.7 1573 150.3 1315.6 1473 157.4 

Over-power case 
(24MW)  

1530.1 1573 42.9 1401.3 1473 71.7 

 
 
5. CONCLUSIONS  
 
Full core level 3-D thermal-hydraulic analyses of the Transportable Fluoride-salt-cooled High 
temperature Reactor (TFHR) have been investigated using CFD modeling. Coupled conduction and 
convection heat transfer is considered. The effects of three practical considerations, including 1) helium 
gap between fuel compact and graphite block, 2) thermo-physical properties degradations of graphite 
matrix due to neutron irradiation, and 3) actual power profile with non-uniform distribution, that may 
challenge the TFHR LSSS limits are evaluated in conservative manners. Finally, bypass cooling and flow 
distribution are adopted to improve the thermal-hydraulic behavior of the TFHR from the nuclear safety 
viewpoint. The major findings are summarized as follows: 
 
1) For the base case with uniform power profile, hot spots occur at the joint corners of fuel blocks due to 

less coolant channels in the local region. While for the limiting case, hot spots shift from inner side to 
the core periphery, leading to much higher temperature peaks. This significantly reduces the 
temperature margin from 214 K (base case) to 10 K for fuel and from 143 K to 16 K for coolant. 
Among the three considered practical factors, the deformed power density from 3-D neutronic outputs 
affects the thermal-hydraulic performance of TFHR the most. The corresponding temperature rise at 
fuel compact accounts for 55~65% in total temperature increase. For the effects of helium clearance 
and graphite properties degradation, the contributions are about 20% and 10 %. 
 

2) With improvements of bypass cooling and mass flow distribution, the temperature distribution 
throughout the core is flattened with much reduced temperature peaks. Owing to the existence of 
bypass flow, most heat is transferred within the active core, leading to much lower temperature of 
outside reflector. It is thus considered a desirable measure for further design of reactor thermal 
insulation system. Overall, a larger temperature margin, relative to the LSSS limits, has been 
achieved, even for the case with 20% over-power. It shows feasibility of the current TFHR core 
design from the thermal-hydraulics prospective. 
 

The other aspects of TFHR research, i.e. tritium control, FLiBe corrosion, materials selection etc., are on-
going within the second term of IRP. In this stage, the system design and transient safety analysis of 
TFHR would be conducted. 
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