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ABSTRACT 
 
Several factors have been identified to affect CHF enhancement: wettability, surface roughness, porosity, 
surface structure and so on. In this study, we performed CHF experiments using structured surfaces to 
validate the parameter effects and to understand their physical meanings. Experimental results show that 
the CHF has a peak value as fin geometry change. A fin with 0.5mm height produces a largest CHF 
around 1.9MW/m2, and fins longer than 2mm reduced CHF values. To explain the results, we developed a 
CHF mapping method describing liquid supply-side and demand-side limits. The liquid demand-side limit 
is governed by heat removal capability, mainly nucleates boiling at the heating surface and calculated 
using the hot spot model. We consider 3 liquid supply-side limiting mechanisms limiting liquid supply to 
the heating surface:  capillary limit in the fin structure and CCFLs in the fin structure and free volume. 
The capillary limit is determined by balancing capillary pressure and viscous dissipation in liquid film on 
the fin side. The CCFL in the structure is calculated using a Wallis-type correlation. The CCFL in the free 
volume limits liquid downward flow by the vapor jetting from the heating surface. The CHF map drawn 
for our experimental results describes the CHF trend in the water pool successfully. Also, we show that 
the CHF mapping method well explain the experimental trend in terms of fin length using FC-72 as a 
bulk liquid. As a result, it is proven that the CHF mapping is an effective way of explaining the CHF in a 
pool boiling. 
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1. INTRODUCTION 
 
Nuclear safety issues related to the severe accident are arisen recent years due to the Fukushima accident, 
especially on the passive heat removal system for the large fuel failure. Since present nuclear power plant 
safety system generally removes the decay heat by auxiliary feed water system with active pump, there 
should be electricity after the accident occurs. However, from the Fukushima accident, it is shown that 
when the station blackout occurs, it is not able to maintain the electricity by failure of a power 
transmission structures. To secure the safety at beyond design basis accidents, ex-vessel cooling is 
suggested to remove the decay heat by passive injection system and boiling heat transfer. The system is 
effective and independent of the electricity and the reliability is high at the severe accident. But, large 
light water reactors require heat removal capability that the required heat flux can be higher than 
conventional CHF. Therefore, we need to enhance the CHF to increase their heat removal capacity. There 
exist various CHF enhancement methods such as surface treatment, fluid property or flow rate control and 
so on. Among them, we focus on the controlled surface treatment for CHF enhancement due to its degree 
of enhancement, robustness, and predictability. 
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In this study, we develop a CHF mapping method to understand the CHF mechanism and find an optimal 
surface design for finned structure. The map is drawn with liquid supply-side and demand-side limits:  the 
capillary force, countercurrent flow limit, and hot spot model are considered and quantified with the 
validation of CHF experiments. 
 
2. CHF EXPERIMENT 
 
Pool boiling experimental tests are conducted to observe the CHF trends for various fin structures. We 
expect that they will show the individual parametric effects by controlling geometric variables.  
 
2.1. Experimental Apparatus and Procedure 
 
A boiling tank (320x400x400mm) of 40L water capacity is made by a polycarbonate. Two copper 
columns are attached to the lid of water tank for connection of a test section and a rectifier. There is a 
small hole at the lid to put a rubber tube led to the empty bucket for maintaining an atmospheric pressure 
inside the tank. Fig. 1 shows the simple schematic drawing of a boiling tank. 
 
 

 
Figure 1. Schematic of boiling pool and measurement apparatus 

 
 
A rectifier (3000A, 10V / 1700A, 36V) is connected to the test section through electric wires and copper 
column. We performed tests using two different rectifiers due to some problems in the laboratory 
condition. A test section consists of specimen, supporting Bakelite and copper board as a connecting part 
to the copper column fixed by bolts. At a lower surface of the specimen, three K-type thermocouples are 
installed at center, right side and left side covered with a high-temperature silicon to remove a heat 
generated only through an upper surface. A gap between supporting Bakelite and specimen is also filled 
with a high-temperature silicon to avoid water trespassing into the lower surface. Specimens of 15x50mm 
size with 2mm-base thickness are made by Stainless Steel 304 with various fin structures on surface 
fabricated by EDM (Electro Discharge Machining) process. Table I shows the fin geometry data of 
various specimens. 
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Table I. Test matrix for experiment 
 

Fin size 1mm x 1mm 
Gap distance(mm) 1 0.7 1 2 1 

Fin length(mm) 0.2 0.5 0.7 1 2 3 
 
 
Bulk temperature is set to the saturation temperature during a whole test time using two cartridge heaters 
(0.5kW each) under the test section. Specimen temperature is measured through the thermocouples 
installed under the specimen and a voltage is checked at the top of the copper column to reflect a voltage 
drop through the electrical wires. The current value is provided from the rectifier. The measured values 
are recorded on the computer by data acquisition systems. We set the program for controlling the current 
to raise the power regularly and identically for all of the specimens. Current is raised by 10A for every 
minute up to the first 30 minutes and 5A for every minute after then. The CHF point is determined when 
the temperature sharply rises for few seconds. We calculated heat flux by multiplying a current and a 
voltage and dividing it by the specimen base area (15x50mm) considering it as surface area. An upper 
surface of specimen temperature is necessary for heat transfer coefficient calculation. As we have a lower 
surface temperature through three thermocouples, we calculated the upper surface temperature at CHF by 
considering the thermal conductivity of Stainless Steel 304 and Joule heating capacity. The calculated 
upper surface temperature is an average value of the bottom temperature since we suppose that CHF 
initiates at the bottom surface, not at the fin structure. 
 
2.2. Experimental Results 
 
The experimental results include the CHF values and the surface temperatures at CHF. Fig. 2 shows the 
averaged CHF values from rectifier 1 and 2 versus the fin length with the 1mm-gap distance. 
 
 

 
Figure 2.  Experimental CHF values versus fin length for 1mm-gap distance 

 
 
As shown in the graph, the change of fin length has a strong influence on the CHF with a specific trend. 
When the fin length is shorter than 0.5mm, CHF increases as the fin length increases. If the fin length is 
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higher than 0.5mm, CHF decreases. When a fin is longer than 2mm, CHF drops even to the smaller 
values than that of the surface without fin structures. The results do not show the expectation that CHF 
would increase due to its extended surface area as the fin length increases. Fig. 3 shows the CHF values 
upon the apparent surface area ratio. 
 
 

 
Figure 3.  Experimental CHF values versus surface area ratio for 1mm-gap distance 

 
 
The graph represents that the area ratio is affecting CHF giving a peak value around the area ratio of 1.5.  
In section 3, we will propose the CHF map method applicable to CHF in the fin structures. 
 
3. CHF MECHANISM ANALYSIS 
 
3.1. CHF map development 
 
In order to explain our experimental results, we propose a CHF mapping method for limiting mechanisms 
like a heat pipe performance map. A heat pipe is another heat exchanging system operated by a balance of 
a liquid supply and a vapor formation rate for the surface heat removal. The system is led to failure by 
limiting mechanisms such as capillary, boiling and entrainment limit when its power exceeds the allowed 
range. We referred to the concept of limitation map and mechanisms of the limitations from the heat pipe 
system. Since the capillary limit and entrainment limit well describe the liquid-vapor countercurrent 
phenomenon in the fin structure, we included those factors in consideration. 
 
A fundamental idea of our study is that the CHF is determined by various mechanisms which limit the 
heat removal capability, mainly by continuous nucleate boiling. We draw the map showing limiting lines 
limited by liquid demand-related mechanisms and by liquid supply-related ones. The shape of each line 
can be changed since various parameters affect each limit in different ways. There can be a certain 
parameter which increases a liquid demand-side limit as it is getting bigger. Another parameter decreases 
liquid demand-side limit as it is getting larger. Figure 4 shows the simple example of a CHF map. 
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Figure 4.  Simple example of CHF map 

 
 
The detailed explanations of the limits will be followed. 
 
3.1.1. Liquid demand-side limit 
 
In the current model the liquid demand-side limit means that the superheat of the surface generates 
irreversible hot spots and initiates CHF, even though there exists enough liquid supply to the surface. 
From our previous research, Choi and NO [1], it is shown that the effective surface area well represents 
the CHF by nucleate boiling limitation. The effective surface area model is a method to convert fin 
structures into the effective heat removal area by using thermal conduction and heat transfer coefficient 
calculating fin efficiency. The model can be applied to the hot spot model by extending base surface area 
since the hot spot model does not consider the structured surface. Additionally, we should consider the 
contact angle representing the wettability. The limit is applied only when there exists sufficient liquid 
supply to the boiling region. In section 3.2.1, detailed calculation method of the model will be shown. 
 
3.1.2. Liquid supply-side limits 
 
On the other hand, liquid supply-side limits mean the lack of the liquid supply compared to the liquid 
demand. If the liquid supply is not enough to rewet the dry spots after the bubble departure, regular dry 
spots can be irreversible ones limiting the heat removal capability. The liquid supply-side limits are 
related to hydraulic phenomena such as a countercurrent flow limit (CCFL) and a capillary limit. Also, the 
countercurrent flow limit is categorized into two parts: CCFL in the free volume and in the structure.  
 
The CCFL in the free volume limits the liquid supply reaching the top of the structure. From the 
phenomenon, the liquid flow falling down from the pool is limited by the jetting vapor flow generated 
from the heating surface through wave instability such as Kelvin-Helmholtz instability. If it happens, the 
limited amount of liquid reaches the top of the structure. 
 
The CCFL in the fin structure limits the liquid supply reaching the bottom of the heating surface. By the 
CCFL, the bubble departing from the bottom surface blocks liquid inlet to the bottom surface if the 
bubble velocity is high enough. In order to evaluate the liquid flow reaching the bottom of the heating 
surface, we can use a Wallis-type CCFL correlation [2] expressed in terms of each fluid velocity, density, 
gravity and width of liquid path. 
 
The capillary limit is governed by the balance between the capillary force and the viscous dissipation 
force. When liquid flows into the bottom surface, it forms liquid film on the fin side due to steam flow. In 
that case, capillary pressure drives the liquid flow, while the viscous dissipation inhibits the liquid flow. 
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The capillary pressure and dissipation forces are expressed in terms of effective radius, latent heat, liquid 
path length, and so on.  
 
Both of the CCFL in the structure limit and the capillary limit are related to limiting the liquid supply rate 
into the fin structure. If the CCFL in the structure limit is lower than the capillary limit, the liquid supply 
rate into the fin structure is limited by the CCFL in the structure limit. On the other hand, if the capillary 
resistance is high enough, the liquid supply rate into the fin structure is restricted by the capillary limit. 
 
3.2. CHF Mapping on CHF Experiments in the Water Pool 
 
A sketch of a CHF map is shown in section 3.2. We applied our experimental results to our CHF map in 
terms of the fin length to obtain the optimal fin length. In case of the lengthened fin, the liquid supply by 
capillary pressure is lowered and the area for nucleate boiling is extended. Accordingly, the liquid 
demand-side limit increases and the liquid supply-side limit decreases as a fin length becomes longer. As 
a result, a shape of the CHF map will be similar to Fig. 4. As shown in Fig. 4, for short fins, the liquid 
demand-side limit, a surface area extension or surface wettability, becomes a main factor of CHF 
determination. On the other hand, for long fins, the liquid supply-side limit, capillary flow dissipation, 
acts as a main determination factor of the CHF. In the following subsections, the limits stated above will 
be developed upon the fin length change. 
 
3.2.1. Liquid demand-side limit – Hot spot/Effective Extension Area Model 
 
According to the Ha and No hot spot model [3-5], CHF can be described as an extension of nucleate 
boiling with an increase in the dried area leading to a peak of the wall heat removal capacity as the wall 
temperature increases. The model describes nucleation sites which are distributed by Poisson distribution. 
Also, in the model, irreversible dry spot is formed when the spot is surrounded by certain number of 
nucleation site due to liquid transfer is blocked.  As a result, as CHF is governed by the maximum heat 
removal capability, we can say that the Ha and No model represents the limit of the liquid demand side, 
rather than the liquid supply side. In order to develop the liquid demand-side CHF model in the fin 
structure, the Ha and No’s hot spot model developed for CHF on the bare heating surface is extended to 
introduce the effective extension area concept as described in our previous study [1]. The method adopted 
fin effectiveness considering temperature gradient through the fin and calculated a net amount of heat 
removal from the fin and surface. By the method, it is possible to expect the practical effect of structures 
for heat removal. In this extended hot spot model, the heating area of the bare surface is extended into the 
effective extension area. CHF in the fin structure is obtained by CHF estimated by the hot spot model 
without the fin structure multiplied by the effective extension area ratio.  
 
A distinguishing aspect of our experimental results is the existence of a peak CHF value as the fin length 
increases. To explain the phenomenon, we firstly analyzed the results using the effective extended surface 
area model. The study suggested the effective surface area calculation method adopting a fin efficiency, 

0�  and axial fin temperature gradient. The method uses apparent surface area and base temperature for 
prediction of the CHF. The following equations represent the calculation method of the extended hot-spot 
model: 
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where 
2 / cm hp kA� , ( )x T x T� �� �  and b bT T� �� � , and x  is an axial distance from bottom surface 

along the fin.  

To calculate the CHF ratio, 0�  is multiplied by the actual extended surface area ratio of the fin. We 
demonstrated that the proposed method well predicted the experimental results performed by Chih Kuan 
Yu and Ding Chong Lu [6]: an increase in an extended surface area ratio is quantitatively well matched 
with a CHF enhancement ratio. Their experiment used FC-72 as bulk fluid and a copper heater with 
millimeter-scale fin structures. However, when the extended surface area model is applied to our 
experimental results, the predicted CHF values are not in good agreement with our experimental ones as 
shown in Fig. 5. The CHF ratio is a relative CHF value of the structured surface to the CHF of the bare 
surface. 
 
 

 
Figure 5. Comparison of predicted CHF ratio by effective surface area method with experimental 

one versus fin length  
 
 
As shown in the graph, the effective surface area model does not follow our experimental results well. 
The predicted values continuously increase as fin length increases while the experimental results show a 
peak value. For the fins shorter than 1mm, the experimental CHF values are much higher than the 
predicted ones. For the fins with the fin length longer than 2mm, the trend becomes reversed. The main 
roles of the fin structure for heat removal system are to extend the surface area for nucleate boiling and to 
distribute base superheat to the fin structures to reduce the bottom surface temperature for the same heat 
flux.  
 
As shown in Fig. 5, the effective surface area model without considering the contact angle of the finned 
surface predicted lower CHF than the experimental results for the short fins. Therefore, we measured 
contact angles for various fin lengths and calculated contact angle effect.  
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The contact angles of the finned structures are measured with Pheonix 300+/ LCA10 for specimens with 
various fin lengths using water. We measured the contact angles repetitively for each sample to secure the 
accuracy of the measured values. Table II shows the measured contact angles for various fin lengths. The 
amount of water droplet is varied from 3um to 20um which is dropped on the center of the space among 
four fins. The droplet is shown to be contacting with the side surfaces of the fins. 
 
 

Table II. Measured contact angles 
 

Fin length Contact angle(°) 
0 90.6 

0.2 75 
0.5 67 
1 81.4 

 
 
The measured contact angle increases as the fin length increases when the fin length is smaller than 
0.5mm while it increases again with around 1mm. The trend is similar to the experimental results, which 
have a peak value. This is thought to be related to the fin structure and liquid film contact to the fin 
surface. Based on the measured data, the fin structure with 0.5mm-length is an optimal geometry to 
spread the water film. For specimens with fins longer than 1mm, contact angles are not measurable due to 
the liquid absorption among the fins. 
 
In order to implement the effect of the contact angle on CHF quantitatively, we put the measured contact 
angles into the hot spot model calculating CHF. In the hot spot model, contact angles is taken into 
account to calculate the nucleate site density as shown in Eq. 5: 
 

27 6
0 5 10 (1 cos ) / cN d��� � �                                                               (5)  

 
where the cavity diameter, dc, is related to the surface superheat. Fig. 6 shows the calculation results 
compared to the experimental results. 
 
 

 
Figure 6. CHF ratios calculated by hot spot model using measured contact angles and experimental 

data versus fin length  
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As shown in the graph, the contact angles can reflect the experimental results well. The current model 
shows a peak value at 0.5mm of the fin length which is similar to the experimental CHF trend. 
 
The nucleate site density value is used to calculate a boiling heat flux and dry area fraction. When the 
nucleate site density is higher than certain number, there forms irreversible dry spots surrounded by 
neighbor bubbles and CHF occurs. Therefore, the nucleate site density is important for deciding CHF 
point.  
 
Finally, by comparing the results of extended surface area method and contact angle calculation, it is 
shown that the wettability effect is more important for liquid demand-side limit in this test condition. 
 
3.2.2. Liquid supply-side limit - Capillary limit 
 
In our research, the capillary limit appears as a key mechanism of the CHF. The capillarity of our 
experiment is described as the liquid film flowing to the bottom of the surface through the gap between 
bubble and the fin side as shown in Fig. 7. A liquid film thickness is obtained using the Eq. 6 [7]: 
 

2/3 2/3 0.672 0.589 0.629/ 0.67 /(1 3.13 0.504 Re 0.352 )i D Ca Ca Ca We	 � � � �                 (6) 
 

where /Ca U
 �� , Re /UD� 
�  and 
2 /We U D� �� . 

 
 

 
Figure 7.  Schematic diagram of the bubble and liquid film 

 
 
The vapor velocity is calculated regarding that all amount of heat from the bottom surface is transferred to 
the liquid-vapor phase transition in saturation condition. Calculated liquid film thickness is used as an 
effective capillary radius. The capillary limit occurs when the amount of liquid supply to the bottom is not 
enough, particularly for the longer fins. For the longer fins, the capillary frictional pressure of the liquid 
increases as the path length increases. We calculated the capillary liquid supply-side limit by balancing 
the frictional or gravitational pressure drop and capillary pressure. Eq. 7 shows the capillary force balance 
equation and Eq. 8 is a simply rearranged form for the CHF estimation by the capillary limit. 
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where 22 ( ) / Rehl l lK r f�� � , ( Re) 16vf � � , ( Re) 15lf � �  and 2 /( 2 )hvr �	 � 	� � , and porosity �  is 
set as 0.5 since both of fin width and gap distance are 1mm.  
 
We calculated the capillary force-limited CHF values. The calculated and experimental results are shown 
in Fig. 8. 
 
 

 
Figure 8. Calculated CHF values for capillary limit and experimental data versus fin length 

 
 
Since a frictional pressure drop increases as a liquid flow path length becomes longer, the capillary limit 
exponentially falls down as fin length increases. Therefore, a capillary limit mechanism can explain the 
low CHF values for long fins in spite of large extended surface area. This means that an increased amount 
of heat by the surface area extension cannot be fully removed due to limited liquid supply. Even if the 
finned surface with longer fin length has the larger extended area, CHF can be lower than that of the plane 
surface: the finned surface with longer fin length can produce negative impact on CHF.  
 
3.2.3. Liquid supply-side limit - CCFL in the free volume 
 
Kutateladze [8] developed a stable film boiling condition by studying the case of pure hydrodynamic 
detachment of liquid by gas jetting through the microporous plate. The liquid detachment was confirmed 
by disappearance of the electricity conduction between a metallic microporous plate and a thin wire 
located parallel to the plate at 0.1 mm above it. He proposed a film collapse model describing the stable 
gas film collapse criteria: 
 

2/330sK M�                                                                      (9) 

 2 /gM gA P��                                                                     (10) 
3 2/Ar gA ��                                                                      (11) 
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0.5
/ ( )l gA g� � �� �� �� �                                                              (12) 

( ) /g film s gj K A� ��                                                            (13) 
 
From the correlations, we obtained 1.33MW/m2 of CHF by converting the vapor flow rate into the heat 
flux. Kutateladze obtained the limiting superficial gas velocity by an experiment with a perforation ratio 
of 0.125. In order to obtain the actual value for our experiment, we should know the void fraction of the 
pool boiling free volume and calculate the value for that void fraction. An experiment of Andrew Lerch 
[9] found that the void fraction for the water pool boiling is over 0.5 near the CHF. Based on the void 
fraction, the free volume liquid supply-side limit reaches about 5.3MW/m2.  
 
3.2.4. Liquid supply-side limit - CCFL in the structure 
 
In order to estimate CCFL in the fin structure, we use the Wallis-type correlation [2] in which it is not 
dependent on the pipe length but to the path diameter: 
 

* 1/ 2 * 1/ 2( ) ( )g lj M j C� �                                                              (14) 

where M and C are constants and 
1/ 2

*
1/ 2

( )
k k

k

l g
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gL

�

� �
�
� ��� �

. 

 
 
The CCFL limit is calculated by equalizing the liquid mass flow rate determined by the amount of vapor 
and CCFL by the Wallis correlation, Eq. 14. For the experimental results, we need to know the CCFL 
constants for the 1mm-gap distance. However, since the exact constants M and C for CCFL calculation is 
not clear in millimeter-scale fluid length, we only estimate the possible range of the CCFL limit. The 
researches we referred are done by Ghiassian et al. [10] and JH Jung et al. [11]. Ghiassian et al. [10] 
obtained the constants of M=0.66 and C=0.6 for the path diameter of 12.7mm. JH Jung et al. [11] 
obtained the constants of M=1.22 and C=1.7 for the 2.5mm gap size. The hydraulic diameter is 0.0025m2 

which is calculated by setting the flow path among the four fins as a unit area. 
 
 

Table III. CCFL limit 
 

Gap size 0.0025 (Hydraulic diameter) 
M=1.22, C=2.7 M=0.66, C=0.6 

Q CHF(W/m2) 43,379,975 2,499,649 
 
 
Both of the CHF values calculated by CCFL limits are well above the liquid demand-side limit. We safely 
say that the CCFL limit in the fin structure is not a limiting mechanism of CHF.  
 
3.2.5 CHF mapping results 
 
In the above sections, we developed a CHF map in terms of fin length. The CHF values were calculated 
considering surface structure geometry and fluid properties to show the liquid demand-side and supply-
side limits. Now, we draw a CHF map for our experimental results following the CHF mapping method 
described in the previous section as shown in Figure 9. The limit based on the hot spot model with an 
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effective extension area method is a liquid demand-side limit taking account contact angle into calculation 
representing the experimental results of short fins. The results of the capillary limit shows that the CHF 
ratio rapidly decreases as the fin length increases. They become comparable with experimental ones when 
the fin length is larger than 2mm. The line for the CCFL in the structure limit represents a calculation 
result by putting M=0.66 and C=0.6. Since the constants are not accurately known, we draw a most 
conservative CCFL value. We expect that the actual one can be higher than the drawn line. Also, CCFL 
limit in the free volume is a conservative limit since the void fraction range near the surface would be 
higher than 0.5. 
 
 

 
Figure 9. CHF map for experiment of structured surface (SS304) using water 

 
 

 
3.3. CHF Mapping on CHF Experiments in the FC-72 Pool 
 
In order to validate the current CHF mapping method further, we draw a CHF map for the experiment of 
Chih Kuan Yu and Ding Chong Lu [2] as shown in Figure 10. Since the contact angle of FC-72 is 
generally very small for most materials, almost less than one degree, we excluded the effect of contact 
angle upon the calculation. Therefore, the CHF values are calculated by an effective extended area 
method without considering the variation of the contact angle. And we chose lower bounded CHF values 
for the CCFL limits in the structure and the free volume in the same way as the water CHF mapping 
described in the previous section. The calculation results show that the FC-72 CHF for the structured 
surface made by copper is mainly determined by the liquid demand-side limit up to the fin length of 4mm. 
Since the liquid supply-side limits are much larger than the liquid demand-side limit, we can say that CHF 
is limited by the heat removal capability by nucleate boiling. 
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Figure 10. CHF map and experimental CHF with fin structured surface (Cu) using FC-72 

 
 
4. CONCLUSIONS  
 
In order to find the parametric effect of the fin structure on CHF enhancement, we conducted experiments 
with finned surfaces. The experimental results show that there exists a peak value of CHF as the fin 
length increases. The CHF mapping method is proposed to analyze the experimental results. The method 
describes the CHF by heat removal capability limitation through various limiting mechanisms. 
 
In the CHF map the liquid demand-side limit can be calculated using the extended hot spot model 
considering the contact angle and the effective extended surface area. The model predicted the 
experimental results closely. The capillary limit follows the experimental CHF trend for the longer fins. 
Since the Wallis-type CCFL model in the fin structure does not depend on the flow path length, the 
constant line for it is drawn in the map. The liquid supply-side limit in the free volume is calculated to be 
5.2MW/m2 by the Kutateladze model. Also, we drew a CHF map for another experiment using FC-72 as 
bulk liquid and copper as heating surface. The map describes the results successfully. In conclusion, the 
CHF mapping method can be utilized to predict CHF and to perform the optimal design of fin structure 
for the pool design with various fluid materials and fin structure heaters.  
 
NOMENCLATURE  
 

h  Convective heat transfer coefficient(W/m2 K) �  Density(kg/m3) 

k  Thermal conductivity(W/m K) h  Heat transfer coefficient(W/m2K) 

fA  Fin surface area(m2) �  Contact angle( ) 

tA  Total surface area(m2) cd  Cavity diameter(m) 

cA  Fin cross-sectional area(m2) �  Surface tension(N/m) 
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f�  Fin efficiency U  Velocity(m/s) 

o�  Overall efficiency effr  Effective capillary radius(m) 

L  Fin length (m) fgh  Latent heat(kJ/kg) 

D  Diameter (m) f  Friction factor 

	  Liquid film thickness(m) kj  Superficial velocity(m/s) 


  Dynamic viscosity(Pa s) vA  Vapor flow surface area(m2) 

mm  Mass flow rate(kg/s)   
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