
SAMPLING VARIANCE AND BIAS OF WILKS' CONSERVATIVE 
ESTIMATE OF CONFIDENCE INTERVALS 

 
J.P. Hessling 

SP Technical Research Institute of Sweden, Measurement Technology,  
Box 857, SE-50115 Boras, Sweden 

peter.hessling@sp.se 
 

P. Hedberg 
Swedish Radiation Safety Authority,  

SE-171 16 Stockholm, Sweden 
peter.hedberg@ssm.se 

 
 
ABSTRACT 
 
For evaluation of the uncertainty of nuclear power calculations, Wilks’ approach has the appearance of an 
ideal tool. A conservatively estimated bound is obtained as the thr �  most extreme model result, of a 
random sample of size determined by r . The methodology is non-invasive, simple and seems efficient 
and adequate. However, as is shown it comes with a high price of large bias and substantial sampling 
variance. This jeopardizes its utilization as well as lowers its credibility and perceived efficiency. 
The unfortunate combination of random sampling and faithful estimation may result in a relative 
sampling uncertainty of the estimated bound(-s) no less than %100 . What is defined credibility, i.e. the 
probability that the estimated bound is conservative relative to the true result, is well below the 
confidence relating the targeted bound(-s) to the true result. For the default application of Wilks’ method, 
that translates into an expected failure rate of up to %10  (instead of %5 ) of estimated bounds. To 
compensate for this deficit in credibility compared to the chosen level of confidence, adjustments of 
current practice are proposed. 
The application to modeling uncertainty is to be clearly distinguished from the original experimental 
sampling problem addressed by Wilks. Here, more is known but not utilized. A viable novel alternative 
based on so-called deterministic sampling with higher accuracy, precision and efficiency will therefore be 
briefly discussed and illustrated. 
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1. INTRODUCTION 
 
In critical nuclear power applications it is crucial to add sufficient margins in calculation results to 
account for their lack of accuracy and precision. While accuracy refers to a systematic deviation, the 
precision expresses the variability around the expected result. Historically, margins have been added to 
account for any source of misjudgment by inclusion of safety factors. The analyses were completely 
deterministic, meaning that any calculation is completely reproducible with a well-defined reproducible 
error. No distinction was made between systematic deviation and variability. The current prevailing 
statistical perspective on calculations is different and boosted by frequent use of random sampling (RS) of 
computer models, often denoted Monte Carlo simulations. Any such method enforces a statistical 
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perspective on possible errors. Systematic deviations and statistical variations should then be 
distinguished and are usually characterized with bias � ��  and sampling variance � �2� , defined as the 
expected error of the calculated result and the second statistical moment around its mean.  
 
A method of quantifying any well-defined number from a finite sample is often labeled estimator. Here, a 
sample consists of a set of results generated by random sampling of uncertain parameters of a complex 
model. The model could for instance describe the core temperature of a nuclear power reactor when 
cooling is lost. It should be emphatically emphasized that no single estimation or specific model is of 
interest, it is rather the expected outcome and variability of repeated estimation for a wide range of 
models that is in focus. These are classical topics in the fields of mathematical statistics and statistical 
signal processing [1], where some of the adopted terminology is frequently used. 
 
For instance, assume it is of interest to estimate the expected model result xy � . For this purpose 

define � �� �� �
�

n

k
kxny

1
1ˆ 	 , where � �k	  is the thk �  random instance of n  model parameter sets. Clearly, 

ŷ  is a function of random parameters and consequently itself a random quantity. Hence, it has an 
expected value ŷ  resulting in a bias xyyy ���� ˆˆ�  as well as sampling variance 

� ��
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total requiring nN  model evaluations � �� �jkx 	 . As any random quantity ŷ  has a sampling probability 

density function � �yg ˆ  as well as a cumulative probability distribution � � � � ydygyG
y

� ���
ˆ

ˆ . The formal 

statistical analysis of ŷ  is not different from that of x , only the interpretations differ. Now if N  is finite, 

 �N

m 1��  will itself be a random quantity with bias, finite sampling variance and its own sampling 
distribution. This chain of random quantities will continue forever, unless it is truncated at a certain level 
by evaluating expectations over all possible model results, e.g. let ��N  above. If an analytical 
evaluation is not possible numerical estimation may be satisfactory, provided N  is sufficiently large. For 
many examples in statistics analytical evaluation is possible [2], but hardly ever for realistic computer 
models for which the computational burden of evaluating a very large number nN  of models is well 
beyond reach. This might explain why sampling statistics of Wilks’ approach [3] has not been discussed 
in the literature in the context of advanced computations. Our goal is to improve the understanding of the 
magnitude of bias and sampling variance of Wilks’ method, so it may be utilized with greater confidence. 
 
The statistician Ronald Fisher [2] was one of the first to address bias and sampling variance. These 
concepts are vital to statistical hypothesis testing, today widely practiced in virtually all fields of science 
and engineering since almost a century. Prior to his work no distinction was generally made between 
estimator statistics of a finite sample and the entire population � ���N . That is very important since the 
uncertainty of the sample exceeds that of the population, and the infinite population always is 
inaccessible. Samuel Wilks [3] was one successor of Fisher’s who fully acknowledged his distinction 
between sample and population statistics. Active in the field of manufacturing, rather than agriculture as 
Fisher, he targeted ‘safe’, or conservative bounds instead of expected outcomes. This focus made his 
approach well adapted for risk assessment. However, the asymmetry of conservatism naturally enforces 
bias. Its magnitude appeared to be of minor interest to Wilks, compared to the degree of conservatism. 
The least bias required is a consequence of the sample variance. The level of conservatism, bias and 
sampling variance are thus intimately related. On one hand, a large bias is economically costly since 
results suggest excessive physical margins. On the other hand, enforcing a small bias of estimation 
usually requires a large computationally costly model sample. 
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While Fisher [2] focused on the quality of estimated mean, variance and correlation, Wilks’ [3] addressed 
faithful estimation (FE) of confidence intervals (CI), following the definition based on ordering of 
outcomes. The difference is larger than it may appear, since the latter sorts sample values (as in section 3) 
and the former involves statistical expectation over the population (as practiced in section 4). As currently 
practiced in measurement science [4] the estimated mean x  and variance 2

x�  are often related to CIs 
� ���

�� xx ,  of confidence �  by more or less hypothetical expansions with coverage factors �
�k  satisfying 

xkxx ���
�� �� . This is not FE of CI’s since possible outcomes are not ordered, as prescribed by the 

definition. Most importantly, FE is nearly ill-posed for limited samples of commonly assigned shallow tail 
(normal) distributions [5] and thus might be of poor quality. For evaluation of modeling uncertainty (MU) 
the value of FE is more questionable than for the experimental sampling practiced by Wilks, as it is 
merely a question whether the pdf � �		f  of model parameters or the coverage factor �k  of the model 
result � �xfx  is assigned. By no means, it is obvious that the best estimator of MU utilizes FE.  
 
Wilks’ approach estimates CI bounds of a statistical model with a statistical method, for confidence �  
and probability �  expressing the degree of conservatism. It is central that two statistical perspectives are 
imposed on a deterministic physical problem, as illustrated in Fig. 1 below. The uncertainty reflects our 
limited knowledge of the true result x . Note that bias and sampling variance are not deficiencies of the 
sampling generator. On the contrary, their definitions rely upon perfect random sampling. 
 

 
Figure 1. Wilks’ estimate �x̂  of the upper bound �x  for confidence �  follows the sampling pdf 

� ��xg ˆ , has bias �  and sampling variance � , with given probability bound, or conservatism 
� � ��� �� xxP ˆ . The model pdf � �xfx  expresses our limited knowledge of the true value x . 

 
The addressed problem is first illustrated with a trivial example (section 2), before the derivation of 
Wilks’ method is given (section 3). The main part of statistical evaluation (section 4) is then followed by 
possible modifications and presentation of some viable alternatives (section 5). Lastly, conclusions 
(section 6) summarize our findings. 
 
2. PROBLEM ILLUSTRATION 
 
Suppose we are interested in the core temperature � �x  of a nuclear power reactor. Before high risk 
experiments are performed it is desirable to simulate possible random outcomes � �x  with a dedicated 
software model � �� . For the purpose of illustration, let’s assume this model is given by,  
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where � �1,0UNI  and � �1,0NRM  refer to zero mean unit variance uniform and normal probability 
distributions, respectively. Of course, any realistic model would be much more complex and would, e.g. 
include solutions to partial differential equations of heat diffusion and describe non-linear effects. These 
complications must be properly accounted for the result to have any real meaning, but will be irrelevant 
here. The quantity x  describes the true temperature but our understanding represented by the random 
variable x  is not perfect, neither with respect to the structure � �� , nor the parameters � �	  of the model  
generating it. We are usually confident enough about the model structure not to associate any uncertainty 
to the form � ��  of these equations. It is different for the parameters 	 , which may consist of universal 
physical constants, initial and/or boundary constraints, and sometimes inferred from experiments [6], or 
just plausible assumptions. Using a statistical representation of our limited knowledge of 	 , as is most 
common today, is our active choice.  
 
The obvious safety aspect is how large the true temperature x  possibly can be. The uncertain model 
should be used to find a safety margin, or provide a bound �x  which is at least extreme as the true 
physical temperature with a given probability, or confidence level � , � � �� �� xxP . Wilks’ statistical 
method estimates a bound �x̂  of this bound �x  with a given probability, or degree of conservatism � , 
� � ��� �� xxP ˆ . The probability � �xxP ��ˆ  of a correctly estimated bound with respect to the true value 

is however lower than both �  and � . This probability describing the credibility of estimation should be 
our main concern in risk analysis, a fact that will receive special attention in section 5.1. 
 
A common application of Wilks’ method (section 3.1) is to let �x̂  be given by the most extreme result of 
one sample comprising 59�n  random values of � �	� , � �� �� �k

k
x 	� ��

� 59,2,1
maxˆ

�
, for 95.0�� �� . The 

generic problem to be addressed is for the model � �	�  illustrated in Fig. 2: Every time Wilks’ method is 
repeated, a different estimate �x̂  is obtained. To reduce the variance, the thr �  most extreme value can 
be chosen, provided the number of samples n  is adjusted according to �� ,,r  (section 3.2). 

 
Figure 2.  Results of repeated application of Wilks’ method on the model � �	�  (Eq. 1), for 

95.0�� ��  and 20,1�r , with the true bound (solid) and mean result (dashed) indicated. 
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For 95.0�� , the expected number of failing estimates of 40 repetitions is 2. This will generally not hold 
for any finite number of repetitions, due to sampling variance of the failure ratio (see section 1). To verify 
such high levels �  accurately, the number of repetitions must be exceedingly large. The targeted bias and 
sampling variance of �x̂  describe its expected deviation from the true bound and variation, respectively, 
evaluated for an infinite number of repetitions. 
 
3. WILKS’ METHOD 
 
3.1. Full Sampling Range 
 
A conservative estimate of a one-sided CI is readily found with a simple box counting experiment. First 
divide the sample space S  of model results x  into disjoint subspaces 1S  and 2S , 
 

� � ����� �� 12121 ,0, SxPSSSSSx .   (2) 
 
Then, draw a sample of n  independent model results � �
 �njjx 1� . Let kn  denote the number of values in 
subspace kS . The probability �  of finding at least one value 2Sx�  is given by, 
 

� � � � nnnPnP �� ������� 111 12 .     (3) 
 
Now define the estimator �x̂  of the confidence bound �x  for a one-sided CI to be given by the most 
extreme sample value: Provided kk Sx �  implies 21 xx ! ,  � �� � �� ��� 2maxˆ SxxP k  for the upper and 

� �� � �� ��� 1minˆ SxxP k  for the lower bound. The probability of obtaining a true bound is hence � , 
representing the degree of conservatism. This is a safety margin measured in probability of success. 
Equation 3 yields an explicit expression for the least possible sample size, � � � �.log1log ����n  For the 
common choice 95.0�� �� , 59�n . 
 
3.2. Truncated Sampling Range 
 
The selection of the most extreme sample value may be generalized to the 1�r  most extreme value. This 
will exclude extreme sample values for 1"r  and thus truncate the sampling range. That is, 

� � � �
 � � �
 �jjr xOxrxx ��� ~,1,~ˆ� , where the operator � �
 �jxO  sorts values � �
 �jx , in ascending or descending 
order depending on whether the lower or upper bound is estimated.  
As in section 3.1, divide the sampling range S  of model results into disjoint subspaces 1S  and 2S . This 
time however, require at least r  values to belong to 2S  or 1S , for estimating the upper or lower bound, 
respectively. The conjugated event is that 1or  ,2,1,0 �r�  values fall into category 2S  or 1S . The 
probability of each such configuration with kn �2  is given by � �kkn �� �� 1 . Since the order the 
successive values are obtained is irrelevant their number is given by the binomial coefficient 
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As required, for the full sampling range 1�r  Eq. 4 is identical to Eq. 3. A difference is that it is here 
necessary to determine sample size n  from r,,��  numerically for 1"r . According to Fig. 3 below, 
there is an almost linearly increasing cost of additional sampling for truncation. Fortunately, as shown in 
section 4 the bias �  and variance 2�  of �x̂  decreases with r . 

 
Figure 3.  The number n  of samples as function of truncation level r , for different conservatism �  
and confidence 95.0�� . The default 59,95.0,1 ��� nr �  is indicated (‘o’ close to origin). 
 
4. STATISTICAL EVALUATION 
 
4.1. Bias and variance of sampling 
 
The bias and sampling variance of any estimator ŷ  of a well-defined quantity y  is defined as, 
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where )  denotes statistical expectation over the population of all possible results. While �  reflects 
systematic errors, 2�  is perhaps the most frequently used measure of variation. Consequently, ‘minimum 
variance unbiased’ (MVU) estimators are obvious targets [1]. For instance, the mean � �1y  and variance 
� �2y  of model results are usually estimated with 1ŷ  and 2ŷ , respectively, 
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from a finite sample � �
 �nkkx 1�   of n  model results. The normalization � �11 �n  [instead of n1 ] of 2ŷ  is 
here specifically chosen to eliminate its bias � , a very well-known result [2]. 
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Evaluation of the bias �  and the sampling variance 2�  requires knowledge of the sampling pdf � �yg ˆ  of 
ŷ , or corresponding information. Integrating by parts, equivalent expressions with the probability 

distribution function � �yG ˆ  can be found, 
 

� � � �� � � � � � � � � �bayydygyGydyGykyGyydygyy
b

a

kb
a

kb

a

kk ,ˆ,ˆˆˆ,ˆˆˆˆˆˆˆˆˆ 1 ����� ��� � . (7) 
 
Estimation of �  and �   with �̂  and �̂  requires a set � � � �
 �N

j
j ny 1ˆ �  of N  results, each from a unique finite 

sample � �
 �nkkx 1�   of n  model results. The size N  should be large enough to suppress the residual 
sampling variance of �̂  and �̂  below recognition. According to Eq. 5 and analogously to Eq. 6, but this 
time for ŷ  instead of x , 
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Wilks’ approach estimates CI’s. Two closely related quantities (corresponding to y ) are involved: The 

confidence level �  is estimated by the enclosed probability (section 4.2) and �x with selected sample 
value(-s) (section 4.3). Both quantities have statistically well-defined bias �  and sampling variance 2� . 
 
4.2. Enclosed probability 
 
The probability �̂  enclosed by Wilks’ estimator of the CI S  is given by  
 

� � � �� ����*
S

x xxSdxxf ���� ˆ,ˆ,ˆ ,     (9) 

 
where � �xfx  is the pdf of model results x . As indicated, perfect estimation corresponds to an enclosed 
probability �̂  equal to the assigned confidence level � . Since the CI is determined from a sample of 
random model results � �
 �njjx 1�  as described in section 2, �̂  is itself a random variable. According to 
Eqs. 5 and 7, the bias ��  and sampling variance 2

��  of �̂  is calculable from the statistical moments, 
 

� � 2,1,ˆˆˆ1ˆ
1

0

1 ��� � � kdGk kk ���� ,     (10) 
 
here expressed in � ��̂G  instead of � ��̂g  for reasons to become apparent: The condition of conservative 
estimation states that the expected enclosed probability �̂  should be at least as large as � , 
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Now, instead of finding the pdf � ��̂g  by evaluating the derivative � � ��� ++��ˆg  of Eq. 4  at �� ˆ� , 
the sampling distribution � ��̂G  may be directly read off from the same equation by comparison to Eq. 11,  
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Using this expression the desired expectations of Eq. 10 can be readily evaluated by repeatedly 
integrating by parts. Inserting the result into Eq. 5, the targeted bias and sampling variance are found, 
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where n  is determined from �� ,,r  according to Eq. 4. Incidentally, the results for ��� �1  as well as 

��� �1  shown in Fig. 4 are almost indistinguishable for 95.0��  and 99.0�� . This exceedingly 
weak dependence on �  remain to be understood. 

 
Figure 4.  The scaled bias � ���� �1  (left) and standard deviation � ���� �1  (right) of the enclosed 
probability of Wilks’ estimator, as function of truncation level r , for various degrees �  of 
conservatism and confidence level 95.0�� . 
 
The bias ��  is large due to the asymmetric requirement of conservative estimation. In principle, no matter 
how large the sampling variance is, any given level of conservatism can be enforced by adding a large 
enough bias with appropriate choices of parameters such as the truncation level r  and sample size n . 
 
Up to this point all results apply for any distribution � �xfx  of model result. This is expected since only 
ordering and sorting of model results has been involved. Whether one result is larger or smaller than any 
other is entirely independent of their distribution, or the pdf of model results. Besides its simplicity, this 
generality of Wilks’ approach likely contributes to its popularity. 
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4.3. Confidence interval 
 
In stark contrast to the enclosed probability �̂  analyzed in section 4.2, the true and estimated confidence 
interval bounds �

�x̂  are strongly dependent on how model results are distributed. The bias and sampling 
variance of Wilks’ estimator of the CI will consequently by unique for every pdf � �xf x  of model results. 
The sampling distribution � ���xG ˆ  can be obtained from that of �̂ , � ��̂G . First observe that �̂  is a 

monotonic function of �
�x̂ , 
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since the probability distribution � �xF  is monotonically increasing. Changing focus from �̂  to �� �� xx ˆˆ  
is hence equivalent to the application of an invertible transformation � ��� x̂ˆ . The probability distribution 
� ��xG ˆ  is therefore obtained by simple substitution in Eq. 12, to evaluate the expectations of Eq. 7, 
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Evaluating these statistical moments numerically will allow for determination of the bias x�  and 
sampling variance 2

x�  of �x̂  defined by Eq. 5. Clearly, the resulting bias shown in Fig. 5 is much less for 
the uniform (right, UNI), than for the normal (left, NRM) distribution of model results. That is mainly due 
to the infinite support (range) of the NRM distribution. As expected, the sampling variance shown in 
Fig. 6 is correspondingly much larger for NRM (left), than for UNI (right). That agrees with the statement 
in section 1 that a large bias is required for a large sampling variance. 
By scaling up the expected variation �  to a measure of uncertainty (around �2 ) representing a plausible 
width of a confidence interval of �x̂ , it is seen that the relative error xxxx �� ���ˆ  (with bias) can be 
as large as 100% for the default application 95.0,1 ��� ��r  of Wilks’ method. The bias and 
uncertainty �2  are almost equal, as conservatism implies for symmetric sampling pdfs.  

 
Figure 5.  The normalized bias � �xxx ����  of the estimated upper bound �

�x̂ , for normal (left) and 
uniform (right) model pdfs � �xf x , for conservatism �  and confidence level 95.0�� . 
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Figure 6.  The normalized standard deviation � �xxx ����  of the estimated upper bound �

�x̂ , for 
normal (left) and uniform (right) model pdfs � �xf x , for conservatism �  and confidence level 

95.0�� . 
 
5. MODIFICATIONS AND ALTERNATIVES 
 
5.1. Credible application 
 
A problem with current de-facto standard for applying Wilk’s approach is that the acceptable uncertainty 
effectively has already been consumed by the true confidence bound �

�x  of the model, which leaves no 
uncertainty for its estimate �

�x̂ . To distinguish it from the confidence level, the probability of successful 
estimation will be denoted credible level. This will aggregate two sources of failing assessments, the 
uncertainty of model results and our limited ability of evaluating this uncertainty from a finite random 
sample. Using conditional probabilities )( baP  describing the probability statement a  will occur, given 
b  is satisfied, 
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for the upper bound, and similarly for the lower one. A lower bound of the probability of success � �xx ���ˆ
, or credibility of estimation, is hence given by �� , not � . Setting a level 95.0��  as a vague limit of 
perceived ‘always’ stems from early development of hypothesis testing [2] but might be unsatisfactory for 
critical risk assessment in nuclear power applications. Applying this level twice for both �  and �  in 
Wilks’ approach, the notion of ‘always’ translates into credible bound no better than 90.0*�� , which is 
an even more questionable probability of failing bounds. 
 
To remedy this situation, the obvious change of perspective is to start by defining a level of credibility 
��  which is reasonable for the targeted application. How that is distributed between �  and �  is 
irrelevant for the bound on credibility, but has influence on the required sample size n . Effectively, the 
result of this modification is that n  increases substantially. That will reduce the efficiency below what is 
perceived assuming �  describes the risk of failure. In comparison, other alternatives like deterministic 
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sampling (section 5.2) might then become more attractive. Examples of how given credibility levels 
translates into sample size is presented in Table 1, where the entry 90.095.0 2 *���  is included for 
comparison to current practice. Assigning an accepted probability of failure to the credibility bound ��  
instead of the confidence level �  the sample size increases substantially, compare cases 1 and 2, 5 and 6 
or 9 and 10. How the credibility is shared between confidence �  and conservatism �  does indeed 
matter, as seen from cases 2 and 3, 6 and 7, or 10 and 11. Sharing them equally (see *), ���� -� , 
appears to be a fair strategy to limit n . In that case, n  is roughly doubled. 
 

Table I. Sample sizes n  for given lower bound ��  on credibility and confidence level � . 
 

Case Truncation r  Credibility bound��  Confidence level �  Sample size n  
1 1 0.902 0.950 59 
2 1 0.950  0.975* 145 
3 1 0.950 0.990 320 
4 1 0.980 0.990 458 
5 5 0.902 0.950 181 
6 5 0.950  0.975* 405 
7 5 0.950 0.990 947 
8 5 0.980 0.990 1156 
9 10 0.902 0.950 311 

10 10 0.950  0.975* 678 
11 10 0.950 0.990 1611 
12 10 0.980 0.990 1872 

 
5.2. Deterministic sampling 
 
There is one clear distinction between the statistical estimation addressed by Wilks and the evaluation of 
MU addressed here. Physical sampling as practiced by Wilks makes no reference to the sources of 
uncertainty whatsoever. It is drastically different for how MU is determined. Completely specified 
uncertain models provide detailed information of all sources of uncertainty. While Wilks’ addressed the 
statistical problem of analyzing a finite set of randomly drawn sample values, the evaluation of MU 
constitutes an entirely deterministic problem of uncertainty propagation. In the latter but not the former 
case, the result is well defined and can in principle be found with arbitrary high accuracy. Consequently, 
Wilks’ method is not primarily derived for the addressed task of evaluating MU.  
 
A high level of utilization of available information is generally required for optimizing the quality of any 
calculation. Uncertainty propagation but not physical sampling requires knowledge of model structure (�  
in section 2). Wilks’ approach explores a minor portion of this information by chance (random sampling 
of uncertain model). A presumably superior approach would be to explore all available relevant pieces of 
information systematically. Sampling as a general idea of representing information of finite 
dimensionality may still be used. Though, systematic exploration of information requires such samples to 
calculated deterministically using specific sampling rules, preferably optimized for the task considered. 
This defines an infinitely large class of methods that for obvious reasons can be labeled deterministic 
sampling (DS), to contrast them from the ubiquitous set of random sampling (RS) techniques to which 
Wilks’ approach belong. The perhaps best known example of DS is the unscented Kalman filter [7], in 
which the covariance is propagated with specific sampling rules with entirely reproducible results. 
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Virtually all DS methods targets highest possible efficiency by using a minimal calculated model sample. 
For small samples of any kind, adding a single sample value will modify the statistics considerably. 
Consequently, to any sample rule there is a definite sample size that must not be modified without 
changing the rule completely. The sampling rule and sample size are intimately related for DS, in contrast 
to most RS methods. The computational efficiency of DS is precisely what is needed to evaluate MU of 
many complex models.  
 
Let’s briefly illustrate some principles of DS by revisiting the trivial example of section 2. The relevant 
question is then how the statistical information of Eq. 1, i.e. the statistics of 	 , can be represented, or 
described in an efficient way with as few sample values as possible. These should not primarily be typical 
or probable (as in RS) but rather encode, or carry the available reliable pieces of information. There are 
many ways to satisfy the first 	.	 �  and second statistical moments around the mean 

� �22 		�	 ��  of 	 . For instance, the two DS samples 
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use two different sampling rules but both represent the first and second moments � �		 �. ,  correctly, no 
matter what /  is. Their fourth moments are however generally different,  
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By modifying /  it is hence possible to vary 0  to satisfy a given fourth moment. The computational cost 
to achieve this control is a doubled sample size. In practice, reliable statistical information above the 
second moment is rarely known, often making it superfluous to represent higher moments. Any finite 
skew � �3		 �  often has a large influence and may need to be controlled. Without further ado, one DS 

sample which encodes the first and all second moments of the two independent parameters � �T21 			 �  
of �  with zero skew is given by [8], 
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Here, column k  contains the thk �  set of sample values of parameters 1	  (top)  and 2	  (bottom). The 
numerical values are very simple in this case since both parameters have zero mean and unit variance. As 
a matter of fact, for this particular case of an affine (linear combinations of parameters) model � �	� , any 
moment of 	  higher than the second is completely irrelevant for the propagated variance � �� �	�var . This 
will not hold for models non-linear in parameters, but often be remarkably accurate for modest non-
linearity. How much information that needs to be encoded depends on the available information (of 	 ), 
the model ( � �	� ) the resulting statistics ( � �� �	�var ) of interest, and desirable accuracy. Even though DS 
methods for FE of CI can be found [9], it is often more efficient and practical to rely upon the current 
practice of non-FE [4], using a coverage factor �k  to expand propagated mean and covariance to 
confidence bounds, 
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Note that since the expectations are evaluated with a representation of the whole population obtained with 
DS rather than estimated for a random sample, all expectations 

k
)  utilize normalization 411 �n  and not 

� �11 �n  as some in Eqs. 6 and 8. Instead of bias and sampling variance, the evaluated (deterministic DS 
method) upper confidence bound 3.1107ˆ ��x  has relative error � � %4.1ˆ ���� xxxxe ���  for a 
coverage factor 64.1��k , assuming � �	�  to be normally distributed. Thus for this example and 
particular DS sampling rule the efficiency as well as the accuracy is superior to that of Wilks’ approach: 
Only four model samples were utilized and the error %4.1�e  is much less than the bias and sampling 
variance indicated by Figs. 5 and 6. The result of DS is compared to that of Wilks’ method in Fig. 7. 
 

 
Figure 7.  The upper confidence bound, evaluated with one DS method (x) and Wilks’ method for 

20,1�r (o,+), and true bound (solid) with approximate pdf (dashed) estimated from 610  samples. 
 
The evaluation of covariance with DS rules typically requires around twice as many samples as the 
number of parameters [8]. Since the number of influential parameters of parametric models often is 
limited, DS generally utilizes significantly smaller samples than Wilks’ method. Since all DS methods are 
completely reproducible, it is pointless to repeat the calculation as in RS to assess the magnitude of the 
error. However, there are usually many possible sampling rules, or DS ensembles which all represent the 
reliable pieces of statistical information correctly but produce slightly different results. The high 
efficiency allows for the use of several DS methods, to indicate a spread in the result. This spread is a 
consequence of encoding in-complete statistical information and that different ensembles represent the 
omitted information differently. By no means, it is related to any statistical effect like sampling variance.  
 
Finally, it is worth mentioning that the mean and the covariance of n  variables can be represented exactly 
by just 1�n  samples (simplex ensemble [8]). This is not possible for RS, sampling variance will always 
render a finite error, no matter how large the sample is. To find the variance of an affine model, which is 
an obvious starting point of most approximations, this is all that matters. All DS methods but no RS 
technique will then provide the exact correct answer. DS methods are thus on par with the method of 
linearization. For moderate non-linearities, DS is often superior to model approximating techniques since 
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it approximates model statistics, which almost without exception is considerably simpler. Further 
illustrations of DS with larger and more realistic examples can be found elsewhere [6,8-10]. 
 
6. CONCLUSIONS 
 
In Wilks’ approach for assessing modeling uncertainty (MU), the large sampling variance and the 
requirement of conservative estimation results in strong bias. It is not unlikely to obtain an error of 
estimated confidence bounds close to the true MU, i.e. 100% relative error. For risk management in 
nuclear power applications this might render excessive economical costs.  
Focusing on the credibility of Wilks’ estimate, i.e. the probability of failing bounds rather than confidence 
levels of the model, the number of samples should roughly be doubled at the same acceptance level. 
Current de-facto standard of 95% probability of estimating a proper bound of the 95% confidence limit(-
s) with the largest sample value implies failure in up to 10% of all cases. 
Wilks’ approach of estimating MU is frequently outperformed by competing techniques such as the 
proposed novel class of deterministic sampling (DS) methods. In an illustrating example, one DS method 
was shown to give superior results with just four calculated sample values relying upon common practice 
utilizing coverage factors, compared to Wilks’ method with 554 samples.  
The reasons why Wilks’ approach does not perform better is an unfortunate combination of faithful 
estimation and random sampling giving a large sampling variance, and no explicit utilization of the 
available information of the sources of resulting uncertainty, i.e. model structure and parameter 
distributions. That kind of information is never known in the original application of physical sampling 
proposed by Wilks, making it a comparatively much better choice in that case.  
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