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ABSTRACT

Faraday waves result when a liquid layer is subjected to a uniform external oscillation in the vertical
direction. Based on the frequency and the amplitude of the forcing oscillation, standing waves will
develop. When a sinusoidal forcing function is applied to an inviscid liquid layer the Faraday wave
problem reduces to a Mathieu equation. The instability evolves following a sub-harmonic resonance
where the frequency of the specific wave mode is half the frequency of the forcing function. The viscosity
acts as a damper by increasing the required critical amplitude for the forcing function to destabilize the
system and induce Faraday wave motion.

This problem has been selected by the authors as a good candidate to assess the multidimensional
capabilities of thermal-hydraulic codes. This work builds upon similar analysis was performed in the past
by the same author for other codes. The interest in this problem is that the onset of the instability requires
a correct formulation of the multidimensional flow. Issues associated with time and space discretization
can be explored with this problem. The impact of numerical diffusion can be inspected as it results in an
effective artificial viscosity which can be quantified from the numerical solution.

In this work, the ability of the nuclear system code RELAP5-3D to predict the development and behavior
of these waves in a vessel downcomer geometry is assessed.

This paper is one among a series presented in this conference that illustrate the use of fundamental
canonical problems to challenge key aspects of the multidimensional flow process while removing
complex processes such as interfacial mass and heat transfer. The analysis evaluates whether basic criteria
such as symmetry, mesh rotation invariance, wave dispersion, hydraulic instabilities, effect of gravity, etc.
are predicted consistently with theoretical expectations. The Faraday wave problem is included into an
automated verification suite which is described in [1] .
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1. INTRODUCTION

A strategy to develop a comprehensive assessment of the RELAP5-3D capabilities in modeling multi-
dimensional flow is presented in a separate paper at this conference [1]. Following a staged bottom-up
approach of the assessment, canonical problems were identified for an initial stage of the assessment and
simulated with the code.
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A verification problem of interest was previously considered by one of the authors [2]. The Faraday wave
problem is well suited to shed some light on the completeness of the multidimensional formulation of the
subject code as well to explore the impact of numerical diffusion in 3D. Numerical diffusion is typically
only analysed for simple one dimensional problems, like the classic 1D manometer problem considered in
the RELAP-3D manuals [3].

Section 2 provides a brief summary of the theory behind the Faraday wave problem. More extensive
literature on this topic can be found in [2] and [4]. Section 3 describes the modeling strategy considered
with RELAPS5-3D while results are discussed in Section 4.

2. FARADAY WAVES THEORY

A linear inviscid assumption leads the free surface boundary condition to a Mathieu Equation, [5]. The
amplitude equation for an annular downcomer geometry was derived in Appendix B [4]. The wave
amplitude is governed by the Mathieu Equation:

d’a

d—TZ+(p—2qcos2z')a:O (1)

Where a is the dimensionless amplitude of the wave, and p and q are the scaled (dimensionless) wave
frequency and the scaled amplitude of the forcing function, respectively:

2
o

q,, = 2Ak, tanh(k H) 3)

A is the amplitude of the forcing function. Also the following definitions apply:

®,, = Wave frequency of the mode m, characterized by the wave numberk  [rad/s]
Q = Frequency of the forcing function (vertical oscillation) [Hz]
T= % = Scaled time [-]
H = Initial depth of the liquid layer [m]
The frequency of the wave @, is related to the wave numberK by the following relationship:
w, =k, g-tanh (k H) )

Equation (4) is consistent with Equation 2.15 of [5] where the effect of the surface tension (capillary
waves) is neglected based on the geometry of this problem.

The geometry considered is an annular downcomer with an average circumference of 14.5 m. This
geometry is similar to the downcomer of the UPTF test facility [6], which is a full scale representation of
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a German-design 4-loop Pressurized Water Reactor (PWR). The outside radius is 2.31 m and the inside
radius is 2.06 m. The gap (the distance between the inner and outer radii of the annulus) is 0.25 m. The
dominant sloshing mode wave number, K, in the annulus was estimated assuming a wave length equal to

the average circumference of the downcomer:

A, =14.5m (5)
Thus:
k, =0.433m™'
0, =203 (©)

w
f =—2=0.324Hz
FW .0 2”_

The stability chart for the inviscid solution is reproduced in Figure 1. Note that the sub-harmonic
resonance discussed previously is represented by the unstable region closest to the origin.
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Unstable

Scaled Forcing Frequency
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Scaled Forcing Amplitude
Figure 1 — Stability chart for the inviscid solution

In Figure 1 above, the scaled forcing frequency is represented by p whereas the scaled forced amplitude
is g. As a result, the resonance frequency for the first mode (m=0) is given by the point which is always
unstable (q=0):

P, =1.0 (7

NURETH-16, Chicago, IL, August 30-September 4, 2015

3353



Which leads to:

f, :2—°=&= 0.648Hz

17Z' T (8)
T, =—=1.544s

fO

The circle in Figure 1 highlights the stability boundary for the sub-harmonic resonance, which is the
most unstable mode. The theory also predicts higher order resonance modes, but those are not considered
in this study.

The role if viscosity is discussed by Ohkawa [4]. More on this topic can also be found in the review by
Benjamin and Ursell [7]. Figure 3 of Muller [7] shows that a forcing function with a non-zero critical
amplitude is needed to excite the sub-harmonic oscillation. The results from Benjamin and Ursell are

reproduced below in Figure 2 for convenience.
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Froore 3. Experimental (---) and theoretical (—) stability curves for the (2, 1)
mode in a circular eylinder of radius 2-70 em.

Figure 2 — Reproduction of Benjamin and Ursell [7] Figure 3

3. SELECTED CODES AND COMPUTATIONAL MODELS

RELAPS5-3D models have been created to simulate this problem. The details of the models have been
constructed following the work of Frepoli [2]. This includes model geometry, the initial conditions, the
boundary conditions, and the forcing function, where applicable. A schematic of the mesh is presented in
Figure 3. The mesh sensitivity is assessed with three different meshes: the reference mesh is 1x12x20, a
coarse variant of 1x4x20, and a fine variant of 1x12x60.
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The annulus is partially filled with water to establish a level at approximately half height of the annulus.
Liquid flow is injected and extracted uniformly at the bottom and a constant pressure set at the top
boundary. The liquid velocity at the bottom boundary is set as:

Vi, (1) = AQcos (Qt) )

Each simulation includes three phases. The problem is allowed to run for a short time, to achieve steady
conditions, before the forcing function is applied. The forcing function is then applied for some time
before being disabled. The last phase is needed to observe the damping of the sloshing motion. A variant
sloshing case is evaluated to establish the natural frequency predicted by the code and the predicted
damping rate once the forcing function stops. Other sensitivity studies considered are the effects of the

amplitude and frequency of the forcing function. These studies allow the determination of the predicted
stability boundary in the Mathieu graph.

——1
————
——

Figure 3 - Noding for an Annular Model [2]

4. SELECTED RESULTS

The reference case (Case 1021) results are presented in Figure 4 and Figure 5. The forcing frequency is
set to 0.5 Hz, which is twice the natural frequency of the ko mode as predicted by RELAP5-3D which is
found to be underestimating the theoretical value. Figure 4 shows that the resonance develops at about 40
seconds into the transient. Contrary to theoretical predictions, the code shows the instability to develop
only for relatively large amplitudes of the forcing oscillation (about 0.5 m). This is associated with the
artificial viscosity (numerical diffusion). This issue is also discussed by the work of Frepoli [2], Figure 4
provides a visual representation of the wave oscillation in a Lagrangian frame of reference (on the right),
i.e., in a moving frame that follows the forcing function:

ywave (t) = yCLL (t)_ ASll’l(Qt) (10)
Where Y, is the collapsed liquid level.

Figure 5 shows that the wave profile corresponds to the fundamental (m=0) sloshing mode in the annulus
with a 1D standing wave with a wavelength A, corresponding to the circumference of the annulus
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(14.5 m). The wave grows to an amplitude of about 0.5 m which is about the amplitude of the forcing
function in this case.

Once the forcing function is stopped, the wave is damped and the damping factor can be estimated

assuming the damping is exponential, i.e., it follows the € law. The damping factor, y, was estimated to
be 0.055 sec™. As presented by [4] the damping factor can be related to the apparent viscosity experienced
by the code. With V being the kinematic viscosity, from the damping factor, y, and the wave number K,
the effective viscosity is computed as follows:

m
v:z—izzo.m? (11)

This is about 500,000 times the physical kinematic viscosity of the fluid (water) for these conditions
2

m
(saturated water at 1 bar) which is equal to3.8-107 — . This result is similar to what is presented by

S
Okhawa for other codes [4].
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Figure 4 - Reference case (Case 1021) Collapsed Liquid Level in each of the four quadrants (0-coordinate)
(on the left) and Faraday wave height (on the right)
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Figure 5 - Reference case (Case 1021) Faraday wave profile

The analysis is continued by assessing the capability of the code to predict the transition from stable to
unstable regimes consistent with the Mathieu chart as presented in Figure 6. A total of 121 cases covering
a range of forcing function frequency and amplitude values were performed. The conditions for which the
wave develops were identified and plotted as blue and red circles in Figure 6.
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Figure 6 — Mathieu stability chart (in blue the ko modes and in red the ki modes)

4.1 Space and Time Discretization Studies

Two mesh sensitivity cases are evaluated for comparison to the reference case 1021 based on the 1x12x20
mesh. Case 1020 considers a coarsening of the azimuthal mesh, ©, (1x4x20) and Case 1025 is a
refinement of axial mesh, Z, (1x12x60).

Results are presented in Figure 7 and Figure 8. Case 1020 is similar to case 1021. The code predicts a
similar wave amplitude once the motion is established and the wave profile is a clear indication of the
m=0 standing wave motion. The damping factor was estimated to be y=0.136 for Case 1020. As observed
in Figure 9, the 1x4x20 mesh damps similarly to the 1x12x20 mesh, possibly a little faster. This result is
consistent with the analysis by Ohkawa [4], which states that the numerical diffusion should increase with
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mesh size. However the change in magnitude of the damping factor in this case may not be significant
enough to reach this conclusion.

It is worth noting that the coarse mesh, with only 4 azimuthal nodes, was sufficient to represent the wave
motion. The result is consistent with the results presented by Frepoli [1] at this conference which state
that in order to capture wave motion, the maximum node size in the direction of the sloshing should be a
quarter of the wavelength.

The effect of the mesh in the vertical direction was assessed with Case 1025 (1x12x60). Figure 7 (on the
right) shows that the solution is rather chaotic and does not lead to the development of the standing wave
observed for the coarser reference mesh (Case 1021). A significant mass error was reported for this case
(Figure 10) which is possibly impacting the accuracy of the solution and preventing the regular wave
motion from being correctly predicted.

A time step sensitivity study was conducted by reducing the maximum allowable time step size by an
order of magnitude. The results are presented in Figure 11 and Figure 12. Figure 11 shows the reduced
time step case, Case 1023, having a more irregular motion of the level than in the reference case, Case
1021, which is shown in Figure SFigure 4. However Figure 12 shows that the Faraday wave is well
defined. A possible interpretation is that the case with the reduced time step size will have increase
numerical viscosity, which acts to stabilize the system. According to Ohkawa [4], the effective viscosity
can be related to mesh size and time step by the following relationship:

u
Vnum,k z%(I_Ck)

u At (12)
G=""

A%,

v is the apparent kinematic viscosity in the direction “k” and C, is the Courant number in the same

num.k
coordinate which is proportional the time step size. The effective numerical viscosity is therefore
expected to increase as the time step size decreases.
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Figure 7 — Mesh sensitivity studies, predicted collapsed liquid levels
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Figure 8 — Mesh sensitivity studies, Faraday wave profile
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Figure 10 — Mass Error for Cases 1021 and 1025
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Wave Profile
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Figure 12 — Case 1023 Faraday Wave
4.2 Other Considerations

A detailed analysis of the RELAPS5-3D results from the above cases indicates that the level is “smeared”
in the numerical solution. Activating the level tracking function available in RELAP5-3D was found to
improve this behaviour'. Figure 13 shows the predicted void fraction in various nodes below and above
the location of the water/gas interface. The level is better defined when the level tracking option is
activated as shown by the right hand plot in Figure 13.

The level definition has a significant impact on the solution. The level sharpening (level tracking) appears
to destabilize the system. Figure 14 through Figure 17 shows that the critical amplitude for the sub-
harmonic resonance appears to be smaller in cases with level tracking active than the equivalent cases
without level tracking presented in Section 4.1. Moreover for larger amplitudes of the forcing function
(A>0.5 m) the resonance is unbounded and the wave amplitude grows until the code crashes not being
able to resolve the non-linear evolution and breaking of the wave motion (Figure 15 and Figure 16). The
onset of instability is anticipated as the amplitude of the forcing function increases. This is an expected
result consistent with an exponential growth of the instability. However without further analysis it is
unclear at this point the mathematical or numerical reasons that justify this behaviour.

Figure 17 shows the result from a time step size sensitivity study conducted on the cases with the level
tracking option active. The reduction of the time step size has a stabilizing effect because of the increased
numerical viscosity as observed in the previous section.

' The option is identified in Figure 14 through 17 by the flag FF LS (Frozen Flow Level Sharpening)
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Figure 17 — Time Step Size Sensitivity on the development of a Faraday wave when the Level Tracking is

5. CONCLUSIONS

active

RELAPS5-3D is able to predict the development of Faraday instability and wave growth in an annular
geometry which approximates the dimensions of the downcomer in the UPTF test facility. The most
unstable frequency for the forcing function is shown to be slightly underestimated compared to results
reported for other codes like WCOBRA/TRAC [2]. However, consistent with the previous work, the

predicted critical amplitude shows a strong numerical damping effect. This is consistent with the expected

level of numerical diffusion present in system codes that rely on a first order discretization of time and

space.

Several studies that include the effect of mesh size, time step size and modeling options are discussed.

One interesting observation is the significant impact of level tracking on the predicted stability and on the

evolution of the induced Faraday waves for forcing functions with amplitudes larger than the predicted

critical amplitude for the onset of the Faraday wave in sub-harmonic resonance with the forcing function.
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