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ABSTRACT 
 
In order to maintain the safety of the reactor core, the minimum DNBR in the PWR core have to remain 
higher than the DNBR limit during Condition I and II events. Therefore, it is important to adequately 
determine the DNBR limit for the reactor safety and economic feasibility. To realistically evaluate the 
relationship among the uncertainties and reduce the conservatism resulting from the unknown 
phenomena, KEPCO NF introduces the Monte Carlo method for the modification and improvement of the 
existing thermal design method. For the best estimate thermal design method, various researches are 
conducted as follows.  First, the random sampling methods are investigated to generate the Gaussian 
random numbers. Second, the normality test methods are reviewed to verify the normality of the 
generated random numbers. Third, the subchannel code, THALES, is used for the subchannel analysis.  
THALES is a COBRA family code developed by KEPCO NF. Through the subchannel analysis, the 
DNBRv distribution can be obtained. Forth, the DNBRv distribution is statistically combined with the 
uncertainties of the other parameters, e.g. CHF correlation etc. Then, the total DNBR distribution is 
generated and the DNBR limit can be determined to avoid DNB at a 95% probability at a 95% confidence 
level. Finally, through the example calculation, it is verified that this method produces reasonable results. 
If more studies are done, the best estimate thermal design method is useful to determine the DNBR limit. 
 

KEYWORDS 
DNBR, THALES, Monte-Carlo Method, DNBR Limit, Subchannel Analysis 

 
 
1. INTRODUCTION 
 
For the reactor safety, the fuel rods in the reactor core should not experience the CHF (Critical Heat 
Flux). In other words, the minimum DNBR (Departure from Nucleate Boiling Ratio) in the PWR 
(Pressurized-Water Reactor) core has to be higher than the DNBR limit during Condition I and II events. 
So, the nuclear power plants are always operated with the sufficient safety margin between the minimum 
DNBR and DNBR limit. In past years, the DNBR limit had been evaluated very conservatively, which 
causes the limitation of the core power uprating and increases the construction cost of the nuclear power 
plant. To reduce too large margin and operate the nuclear power plant economically, the DNBR limit 
needs to be assessed properly. 
 
The DNBR limit is established based on Standard Review Plan 4.4 [1] of USNRC (U.S. Nuclear 
Regulatory Commission). According to Standard Review Plan 4.4, the acceptance criteria of the fuel 
design limit is described as follows: “One criterion provides assurance that there be at a 95-percent 
probability at the 95-percent confidence level that the hot fuel rod in the core does not experience a DNB 
(Departure from Nucleate Boiling) or transition conditions during normal operation or AOOs (Anticipated 
Operational Occurrences).” The following paragraph presents the combination of the uncertainties in the 
parameters. “Uncertainties in the values of process parameters (e.g. reactor power, coolant flow rate, core 
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bypass flow, inlet temperature and pressure, nuclear and engineering hot channel factors), core design 
parameters, and calculation methods used in the assessment of the thermal margin should be treated with 
at least 95-percent probability at the 95-percent confidence level.” and “Each uncertainty parameter 
should be identified as statistical or deterministic and should clearly describe the methodologies used to 
combine uncertainties.” 
 
The most important thing of the thermal design is the statistical combination of the uncertainties in the 
parameters. To achieve this, the Monte Carlo method is used at present. The Monte Carlo method helps 
realistically evaluate the relationship among the uncertainties and reduce the conservatism resulting from 
the unknown phenomena. The representative thermal design methods based on the Monte Carlo method 
are MSG (Méthode Statistique Généralisée) [2] and MTDP (Monte Carlo Thermal Design Procedure) [3] 
developed by Framatome and Belgatom, respectively. 
 
For the best estimate evaluation of the uncertainties in the PWR core, KEPCO Nuclear Fuel (hereinafter 
KEPCO NF) has been developing the thermal design method on the basis of the Monte Carlo method. In 
Chapter 2, the major features of the best estimate thermal design method are described. The example 
calculation using this method is performed in Chapter 3. 
 
2. DESCRIPTION OF THE BEST ESTIMATE THERMAL DESIGN METHOD 
 
Fig. 1 shows a reason why the DNBR limit is needed simply. Since all the parameters that affect the DNB 
have the uncertainties with their own distribution, the DNBR consequently has the uncertainty, which 
leads to the occurrence of DNB. Therefore, the DNBR limit is reasonably determined to avoid the DNB at 
a 95-percent probability at a 95-percent confidence level. In this chapter, the main characteristics of the 
best estimate thermal design method being developed by KEPCO NF are described.  
 

 
Figure 1.  Brief Summary of the Best Estimate Thermal Design Method 
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2.1. Analysis Cases 
 
It is not possible to evaluate the thermal performance of the core at all the operating conditions. 
Therefore, the representative operating conditions are selected, which are called the analysis cases. The 
analysis cases are divided into two categories – steady-state and transient analysis cases. Firstly, the 
steady-state analysis case is set in the range of the possible operating conditions during the normal 
operation of the nuclear power plant. The steady-state analysis case is generally a combination of the core 
power and system pressure. Secondly, the transient analysis case means the postulated limiting operating 
condition, which is chosen from the transient analysis that may occur during the operation of the reactor 
core. 
 

2.2. Uncertainties of the Parameters 
 
The parameters that affect the thermal performance of the reactor core have the uncertainties. Each 
parameter has its own magnitude and distribution. The uncertainties considered in the best estimate 
thermal design method can be classified into three types. The first type is the uncertainties of the core 
operating parameters, which is due to the measurement, instrumentation, and data processing, etc. The 
second type comes from the CHF (Critical Heat Flux) correlation. The CHF correlation has the 
uncertainty because the CHF correlation is obtained from the M/P distribution, where M/P is the ratio of 
the measured data (M) to the predicted data (P) from the subchannel code. The last type is the 
uncertainties of the subchannel and transient codes. They are imposed to compensate the prediction 
uncertainty of the code by the regulation authority in general. 
 

2.3. Reviews of the Statistical Techniques for Generating the Gaussian Random Numbers 
 
Since the thermal performance of the reactor core is affected by various parameters, it is too complicated 
to investigate the relations between them. Therefore, the Monte Carlo method is introduced to realistically 
evaluate the relationship among the uncertainties of the parameters. The Monte Carlo method needs many 
random numbers. Because most of the uncertainties in the parameters have normal distribution, various 
Gaussian random number methods were investigated. In this section, some of the most widely used 
Gaussian random number methods and normality test methods are reviewed. 
 
2.3.1. Random Sampling Methods 
 
There are plenty of the ways to generate the Gaussian random numbers. In this paper, three random 
sampling methods are reviewed. First, there is the CDF (Cumulative Distribution Function) inversion 
method, which uses the CDF directly. The form of the CDF, �(x), is as follow. 
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where �(x) is the PDF (Probability Density Function). The form of the PDF with zero mean and unit 
variance is as follow. 
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Using Eq. 1, the CDF inversion method is expressed in Eq. 3. 
 

� �1x u�� �                            (3) 
 
where u is the uniform random number in the interval (0,1) and x is the resultant Gaussian random 
number. Since the CDF is a function of the error function as shown in Eq. 1, this method consumes a lot 
of time. To supplement its weakness, the polynomial expression instead of the error function is used; 
however, the use of the polynomial expression has to be careful because the accuracy of the Gaussian 
random numbers depends on that of the polynomial expression. 
 
The second method is the transformation method. The representative transformation method is Box-
Muller method [4]. Box-Muller method transforms two independent uniform random numbers (u,v) in the 
interval (0,1) into two independent Gaussian random numbers (x,y) using Eq. 4. 
 

� � � � � � � �2 ln sin 2 ,   y 2 ln cos 2x u v u v� �� � � � � �     (4) 

 
The third method reviewed in this paper is the rejection method. Of many rejection methods, polar 
method is introduced [5-6]. Polar method is a modification version of Box-Muller method, which changes 
two independent uniform numbers (u,v) in the interval (-1,1) into two independent Gaussian random 
numbers (x,y) using Eq. 5. 
 

� � � �2 ln 2 ln
,   y
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x u v
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where, 
 

2 2 2 1.0S R u v� � � �              (6) 
 
Polar method has the advantage of avoiding the trigonometric functions directly. Polar method can be 
schematized in Fig. 2.  
 

 
Figure 2. Schematic Diagram of the Polar Method 
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If (u,v) is located inside the circle (acceptance region), (x,y) is accepted as the Gaussian random numbers. 
Otherwise, (x,y) cannot be used. In other words, if S exceeds 1.0 or is equal to 0.0, the uniform random 
number (u,v) used ((u1,v1) in Fig.2) are rejected and two new independent uniform random number 
(u*,v*) are generated ((u2,v2) in Fig.2). 
 
2.3.2. Normality Tests 
 
For the use of the Gaussian random numbers generated in Section 2.3.1, the normality tests must be 
carried out. The normality test is based on two hypotheses as follows. 
 
• Null hypothesis: the random numbers follow the normal distribution. 
• Alternative hypothesis: the random numbers do not follow the normal distribution. 
 
If the null hypothesis is accepted at the 5% significance level through the normality tests, it is concluded 
that the random numbers follow the normal distribution. Otherwise, the random numbers do not follow 
the normal distribution at the 5% significance level. The representative normality test techniques used in 
this paper are in Table I. 
 

Table I. Representative normality test methods 
 

Statistical Techniques Normality Tests 
Frequency Test �2 test 
Empirical Distribution Function (EDF) Statistics Kolmogorov-Smirnov (K-S) Test 
Correlation Test Shapiro-Wilk Test 
Moment Test D’Agostino-Pearson Test 

 
The �2 test is the statistical technique that uses the difference between the observed frequency and 
expected frequency at the each interval. Next, the K-S test is the normality test method that compares the 
difference between the empirical distribution function (EDF) and theoretical probability density function. 
In case of �2 test and K-S test, the critical value is determined based on the degree of freedom and 
significance level. If the normality test results are less than the critical value, the null hypothesis is 
accepted. 
 
Shapiro-Wilk test [7] uses the ratio of the variance of the normally distributed weighted least square 
estimates and that of the random numbers generated in Section 2.3.1. If Shapiro-Wilk test is conducted, 
the test statistics W bounded by 0.0 and 1.0 is generated. Then, W is changed into p-value for the 
normality test. If p-value is larger than 0.05 (5% significance level), the random numbers is assumed to be 
normally distributed. 
 
Finally, there is the moment test. This normality tests are used for sample moments, e.g. kurtosis and 
skewness. The representative moment test is the D’Agostino-Pearson test [8]. D’Agostino-Pearson 
proposed the omnibus test that combines skewness (��� ) and kurtosis (b2) in Eq. 7. The K2 has 
approximately a �2 distribution, with two degree of freedom when the population is normally distributed. 
 

� � � �2 2 2
1 2

K Z b Z b� �              (7) 
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Finally, the uncertainties of the subchannel code and transient code are reflected, which are randomized 
using the random sampling methods in Section 2.3.1. The subchannel code and transient code 
uncertainties are also considered the each of the DNBRv’, and then the total DNBR distribution (DNBRTS) 
are obtained finally as shown in Fig. 4. 
 

2.6. Determination of the DNBR Limit 
 
Since the DNBRTS distribution is derived from the finite samples, it has the sample mean (����) and 
standard deviation (STS). To determine the DNBR limit, the population mean (�T) and standard deviation 
(�T) are needed. The population mean and standard deviation are estimated using Eq. 8 and 9 with the (1-
�) confidence level. 
 

,1
TS

T TS f

S
x t

N
�� �� �                          (8) 

 
2

2

2
,1

TS
T

f

f S

�

�
� �

�
�                                   (9) 

 
where N is the number of the random numbers and f is the degree of the freedom (N-1). Tf,1-� and 	
����  
are the t-distribution and Chi-square distribution, respectively. From the DNBRT distribution as shown in 
Fig. 5, the DNBR limit is obtained to prevent the DNB at a 95/95 criterion in Eq. 10. However, the 
distribution-free tolerance limit is used if the DNBRTS distribution does not follow the normal distribution 
in (1-�) confidence level [14-15]. 
 

DNBR Limit 1.0 1.645
T
�� � �           (10) 

 

5%

1.0 DNBR Limit  
Figure 5. Schematic Diagram for Determining the DNBR Limit 

 
3. EXAMPLE CALCULATIONS 
 
In this chapter, the example calculation is presented to verify this thermal design method. First, the 
analysis cases are determined. The steady-state analysis cases contain the core operating limit range, 
which form the combination of the core power and pressure in general. In this paper, four representative 
steady-state analysis cases are chosen in below. 
 
• Case 1: High Power and High Pressure 
• Case 2: Low Power and High Pressure 
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• Case 3: High Power and Low Pressure 
• Case 4: Low Power and Low Pressure 
 
In addition, one transient analysis case is added for the best estimate thermal design method in below. 
 
• Case 5: Loss of Flow 
 
Next, the magnitude and distribution type of the uncertainties are defined in Table II. 
 

Table II. Magnitude and distribution type of uncertainties in the core operating parameters 
 

Parameters Magnitude Distribution Type 
Reactor Power 2.0 % 2-Sided Normal 
Inlet Temperature   6 oF  2-Sided Normal 
Pressure 50 psi 2-Sided Normal 
Coolant Flow Rate 4.2 % 2-Sided Normal 
Core Bypass Flow 1.5 % Uniform 
Nuclear Hot Channel Factor 4.0 % 1-Sided Normal 
Engineering Hot Channel Factor 3.0 % 1-Sided Normal 

 
Using the nominal values of the analysis case and uncertainties of the core operating parameters, the core 
operating parameters are randomized. In this example, 3,000 random numbers generated from the polar 
method are used. For example, Fig. 6 shows the histograms of the randomized core operating parameters.  
 

 
Figure 6. Histograms of the Randomized Core Operating Parameters 
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To verify the normality of the random numbers, the normality tests are conducted. For example, the 
normality test results of the core operating parameters used in the analysis case 1 are presented in Table 
III. The critical values are given in parenthesis in Table III. As shown in Table III, all the core operating 
parameters pass the normality tests, which mean that all the core operating parameters randomized follow 
the normal distribution at the 5% significance level. 
 

Table III. Normality test results of the core operating parameters 
 

Normality Test Methods �2 Test 
(32.6706) 

K-S Test 
(0.0248) 

Shapiro-Wilk 
Test 

(0.05) 

D’Agostino-
Pearson Test 

(5.9915) 
Reactor Power   9.2675 0.0111 0.3800 0.3458 
Inlet Temperature 13.8202 0.0069 0.3989 0.3780 
Pressure 13.7587 0.0082 0.3916 1.5559 
Coolant Flow Rate   7.7841 0.0097 0.3504 0.5508 
Nuclear Hot Channel 
Factor   7.9425 0.0121 0.3215 2.3545 

Engineering Hot 
Channel Factor 14.2948 0.0096 0.3829 1.0842 

 
Since the normality tests are passed, the randomized core operating parameters can be used. For the 
subchannel analysis, the randomized core operating parameters are combined each other and then 3,000 
core operating parameter sets are generated. Based on these sets, the subchannel analyses are conducted 
using subchannel code THALES and DNBRv distribution is obtained. The histograms of the DNBRv 
distribution are shown in Fig. 7. 
 

  
Figure 7. Histograms of DNBRv 
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In this stage, the uncertainties of the CHF correlation, subchannel code, and transient code are reflected in 
the DNBRv distribution, and then DNBRTS distribution is obtained. Fig. 8 shows the histograms of 
DNBRTS. 
 

 
Figure 8. Histograms of DNBRTS 

 
From the DNBRTS distribution, the sample mean (���� ) and standard deviation (STS) are calculated. 
Substituting ���� and STS in Eq. 8 and 9, �T and �T are estimated with 95% confidence level. Using �T and 
Eq. 10, the DNBR limit can be calculated. The calculation results of �T and DNBR limit in all the analysis 
cases are summarized in Table IV. 
 

Table IV. �T and DNBR limit in all the analysis cases 
 

Analysis Cases �T DNBR Limit 
Case 1 0.12509 1.2058 
Case 2 0.13288   1.2186* 
Case 3 0.11826 1.1945 
Case 4 0.13206 1.2172 
Case 5 0.12141 1.1997 

* : limiting case 
 
In case of the example calculation, the DNBR limit is set to 1.2186, which assures that a DNB in the hot 
fuel rod do not occur at least 95% probability at a 95% confidence level during Condition I and II events. 
 
4. CONCLUSIONS  
 
For the best estimate evaluation of the uncertainties in the parameters, KEPCO NF has been developing 
the thermal design method based on the Monte Carlo method. To develop this method, various random 
sampling methods and normality test methods are reviewed and applied. The random sampling methods 
make the core operating parameters randomized, which can be used only if the normality tests are passed.  
Second, the subchannel analysis code THALES is used to obtain the DNBR. Finally, a method to 
statistically combine the uncertainties is investigated. To verify this method, the example calculation is 
carried out, which is shown that this method reasonably produces the DNBR limit. 
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