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ABSTRACT 
 
A new experimental facility has been developed at KTH Royal Institute of Technology to measure 
temperature and heat flux propagations in solid walls due to mixing of non-isothermal water streams in 
their vicinity. The main purpose of the measurements has been to obtain a high-precision experimental 
database suitable for validation of Computational Fluid Dynamics (CFD) codes. Consequently, a set of 
experiments have been performed in a test section simulating the annular region in the BWR control-
rod guide tubes. Since preliminary CFD results implied that 0.1-1 Hz temperature oscillations were to 
be expected, this experimental research intends to assess the magnitude of temperature fluctuations 
within the abovementioned frequency range. To this end, water and wall temperatures have been 
measured in the innermost part of the test-section annulus, with a variety of boundary conditions. As 
thermocouples would otherwise be available at few axial and azimuthal coordinates only, the tube they 
are installed on has been lifted, lowered and rotated by a software-controlled motor to record temperature 
fluctuations in the whole mixing region. At each measurement point, data have been collected over a 
time long enough to detect the existence of the aforesaid fluctuations. Moreover, an uncertainty analysis 
has been carried out concerning water temperatures. Thermocouples meant to monitor these 
temperatures have been modelled with a finite-element method for this very purpose. The wall heat flux 
has also been estimated using experimental data, thanks to a corrected finite-difference Crank-Nicolson 
scheme.  
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1. INTRODUCTION 
 
The reader should refer to the introduction in [1] for a broader introduction to the problem of thermal 
fatigue in BWRs; hence, here we will just recall that this study investigates thermal fatigue, believed to 
have caused the break of a control rod stem at Oskarshamn 3 and of another one at Forsmark 3, together 
with cracks in the stem of many control rods in both reactors [1]. Thus, comparably to the actual plant 
layout, in our experiments two turbulent water streams at either 60 or 150 mix with other two at 
276 , in the vertical annulus between an inner and an outer tube. Water and wall temperatures are 
recorded at the wet surface of the inner tube and at various depths in it respectively, since the inner tube 
replicates the BWR control-rod stem affected by thermal fatigue-induced stresses. 
 
This article focuses on estimating uncertainty levels in the water temperature time series exemplified in 
[1], and on evaluating the radial heat flux at the wet surface of the inner tube.  
The uncertainty associated with our measurements is explored here since this topic has not been covered 
in [1]. Instead of examining end-to-end calibration data [2], uncertainty is determined by dividing the 
data acquisition system (DAS) into three components, whose contribution to the total uncertainty is 

5962NURETH-16, Chicago, IL, August 30-September 4, 2015 5962NURETH-16, Chicago, IL, August 30-September 4, 2015



taken to be independent of one another. A fourth uncertainty source, sprouting from the thermocouple 
placement and geometry, is also accounted for. 
 
As regards the radial heat flux, several approaches can be found in literature for deriving it from 
experimental data (see, e.g., [3] and [4]). We have been specifically requested to find the radial heat flux 
in the vicinity of water-side thermocouples; therefore, a fast method to approximate this variable is 
proposed here, based on a finite-difference Crank-Nicolson scheme that resorts to the few water 
temperature series available at each axial level . 

 
2. MOUNTING OF THERMOCOUPLES IN THERMOCOUPLE DISCS  
 
Before addressing the topics outlined in the introduction, it is worth to illustrate how thermocouples 
have been installed in the wall of the inner tube, since we will return to this point later. 
First, however, we must stress that our original goal was to solve the inverse heat conduction problem 
(IHCP) thanks to smoothed wall-temperature readings. Thus, 6 0.7 mm Ø blind holes were drilled for 
housing the necessary 0.5 mm Ø K-type thermocouples. These holes were drilled with a mill machine 
in the mid thermocouple disc [1] from its back surface to different depths. This disc, as well as the left 
and right ones, has a diameter of 11.90 mm and an upper surface whose curvature matches the one of 
the inner tube [1].  
A number of papers can be found in literature where the thermocouple is welded to the bottom of its 
hole (i.e., embedded [5]) for similar purposes. However, since welded thermocouples usually require 
special equipment and big holes that could sensibly modify the temperature distribution in the 
thermocouple disc, here casings were used for housing the thermocouples, similarly to [6]. These 
casings, hollow cylinders measuring 0.7 mm at their outer diameter and varying in length to make 
soldering easier, were partially inserted into the holes and then silver-soldered to the back surface of the 
thermocouple disc. After that, each thermocouple was pushed through its casing into the corresponding 
hole until its tip made contact with the bottom of the hole. The thermocouple was then kept in position 
by soldering it to the casing with a high-temperature solder  600 – 700 ). 
Other casings were soldered to the 6 0.7 mm Ø through holes that house the 0.5 mm Ø K-type 
thermocouples measuring water temperature (see Fig. 1), henceforth called H1, H2, H3, H4, V1 and V4. 
These holes were drilled in the left and right thermocouples discs [1]. In this case, each thermocouple 
was inserted into a hole until its tip lay at  17.5 mm, which identifies the water-exposed surface of 
the inner tube [1].  
Finally, all thermocouple discs were TIG welded to the inner tube at the interface with its wet surface. 
 
 

 
 
Fig. 1. Longitudinal section of the thermocouple after insertion in the thermocouple disc. Light 
gray: thermocouple; gray: thermocouple disc; dark gray: casing; red: high-temperature solder. 
 
    
3. UNCERTAINTY 
 
3.1. Methodology 
 
Before proceeding any further, it should be clarified that the analysis outlined here concerns the 0.5 mm 
Ø K-type thermocouples for water temperature only, as they are of primary importance in our study.  
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In our experimental setup, the thermocouple signals are acquired by the NI SCXI-1102 module in an NI 
SCXI-1000 chassis, and then transferred through the A/D converter of an NI DAQ-6024E card to a 
laptop for data recording and processing. This being said, four uncertainty sources, here shown as tuples, 
are taken into account: 

� the intrinsic accuracy  of the K-type, ungrounded thermocouple; 
� the absolute accuracy  of the DAQ-6024E card; 
� the absolute accuracy  of the SCXI-1102 module; 
� the thermocouple mounting error . 

All uncertainty sources are assumed to be independent of one another. This hypothesis simplifies the 
following analysis considerably – see Eq. (16).  
 
As concerns the intrinsic accuracy of the thermocouples under study, it is equal to 1.5  
[7], since these thermocouples are supplied with IEC 60584-2 Class 1 accuracy as standard [8] and the 
highest water temperature is lower than 375 . 
 
With regard to the DAQ-6024E card, its accuracy is evaluated according to the guidelines in [9], with 
the voltage-temperature relationship from [10], and offset, noise and percent-of-reading components of 
the absolute accuracy from [11]. Biases  and  are listed in Table I. 
 
Concerning the accuracy of the SCXI-1102 module, the same procedure holds as for the DAQ-6024E 
card, this time with values from [9]. Biases  and  are also shown in Table I. 
 
As to the thermocouple mounting error, it is estimated by solving a simplified heat equation [12] 
 

  (1) 

 
on the thermocouple domain. Eq. (1), expressed in cylindrical coordinates, is written in the weak form 
and implemented in the finite element software FreeFem++ [13] with a Crank-Nicolson scheme.  
In order to reduce the dimensionality of the problem at hand to two, a lead-wire model (also known as 
single-wire or one-wire model) is introduced, which combines Chromel and Alumel wires into an 
equivalent one, characterized by a radius ,  (see [14, 15, 16, 17]). 
Postulating a perfect contact between the insulator and the outer protective sheath [18] and modeling 
the sheath as a hollow cylinder and the thermocouple tip as a hemisphere also help to develop a 
simplified two-dimensional model. 
As the problem is now axisymmetric, differential normal area, gradient and differential volume can be 
written in cylindrical coordinates discarding any contribution from azimuthal components, so that the 
weak formulation of Eq. (1) is obtained as 
 

  (2) 

 
Robin boundary conditions are supplied at every edge of the domain, which implies that 
   

 or  (3) 

 
where the heat transfer coefficient obeys Eqs. (4) and (5) 
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17000 W

m2K
from symmetry and adiabatic boundary conditions respectively,

 
(4) 

(5) 
 
while the fluid temperature changes with time according to Eq. (6) 
 
  (6) 

 
with  = 2 ,  = 397.95  and  = 10 . As to length  and radius , they are shown in Fig. 1 and 
Fig. 2 respectively; specifically,  refers to the outer radius of the thermocouple sheath,  being the 
inner one. 
Now, applying the Crank-Nicolson scheme, Eq. (2) is rearranged as 
 

  

 

(7) 

where properties ,  and  are evaluated at temperature . As to the materials constituting these K-
type thermocouples, the sheath was manufactured from Inconel 600, while MgO was chosen as 
insulator. Thermal properties for MgO, single-wire equivalent and Inconel 600 are computed from 
functions provided with the Material Properties Database (MPDB) software [19]. Thanks to Eqs. (4) and 
(6), the present model can be verified by comparison with [20], where an analytical expression is given 
for the radial temperature distribution in a thermocouple immersed in a fluid at temperature . In 
the same article it is postulated that a thermocouple can be broken down into a number of concentric 
cylindrical layers, each of them with a constant  and known  at its boundaries. In accordance with 
the examples in [20], three such layers are identified for the K-type thermocouple probe under study – 
namely, the single-wire equivalent, the MgO insulator and the Inconel sheath –, each with  evaluated 
at . In the single-wire region  is calculated as   
 

   (8) 

 
while  is given by 
 

 
at and

at
 

(9) 

(10) 

 
in view of the postulated perfect thermal contact of the insulator with both the sheath and the single 
wire. The heat-transfer coefficient is defined in Eq. (4). 
As to the computational domain, a view of the finite element (FE) mesh can be seen in Fig. 3. 
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Fig. 2. Thermocouple model. Red: single-wire 
equivalent; orange: insulator; green: sheath. 

 
Fig. 3. FE mesh. 

 
 

 
 

Fig. 4. Comparison of analytical and FE results at point R (referred to as  and  
respectively) with  = 2 ,  = 397.95  and  = 10 . The corresponding is plotted as well. 

 
Fig. 4 establishes a comparison between FE results and the analytical solution from [20]. The agreement 
between the two models is quite good, at least with  as high as in Eq. (4) and with the assumption of 
perfect thermal contact between the insulator and the adjacent materials. 
 
Coming now to the assessment of the thermocouple mounting error, the Robin boundary conditions in 
Eq. (7) is replaced with Dirichlet ones at  and . 
The temperature discussed in the further analysis, hereinafter called , is reached in the lowest part of 
the single-wire region (at point R in Fig. 2), while the temperature on boundaries  and  is named . 

 

TFE 
Tanalyt 
Tf 

 

R R 
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In a more rigorous approach, one would determine  from an IHCP since, in fact, a good estimate 
of  is returned by the data acquisition function, while is unknown. However, given that the 

thermocouple mounting error is a function of  (see Eqs. (13) and (14)) and our primary 
concern is the order of magnitude of this error, our method aims to calculate  by substituting the 
known for . 
As can be already guessed,  is assumed constant over  and  because the thermocouples 
monitoring water temperature are inserted into narrow, short horizontal holes, where water velocity is 
expected to decrease as the flow approaches the casing surface (see Fig. 1). 
Turning to another issue, at time t, henceforth called , is not uniquely defined because, as said 
in Section 2, 6 thermocouples measure water temperatures, which are then stored in 6 arrays (one per 
thermocouple); that is, 
 
   (11) 

 
where array  in Eq. (11) could be any of the aforesaid arrays after being detrended. Detrending is 
necessary to derive reliable values for frequencies and variance of , in that both parameters are 
expected to play a role in the thermocouple transfer function – see, e.g., [16], where this function is 
related to frequency and amplitude of .  
Carrying out an FE analysis for each of the 6 temperature arrays would be infeasible, as they are created 
for any  pair in the 3 entries of the experimental matrix [1]. Thus, a parameter is introduced, 
accounting for the standard deviation and discrete Fourier transform (DFT) of each array 
 

   (12) 

  
where  is the maximum standard deviation of all the detrended temperature measurements and 

 is the integral of the DFT between = 0.1  and  = 1 , whereas  is the integral of the 
DFT up to  = 4 Hz.  
Given that  in Eqs. (13) and (14) is heavily dependent on , the temperature array 
with the highest is selected as the ultimate  and included in a modified Eq. (7) – via Eq. (11) – with 
Dirichlet boundary conditions at  and . As a result, the ultimate  leads to the ultimate  in Eqs. 
(13) and (14), which yield mean error and sample standard deviation as 
 

   (13) 

 
and 
  

   (14) 

  
respectively. After that, a  is computed as 
 
   (15) 

 
and stored as . 
Finally, following the procedure described in [2], the total uncertainty  and its shift  are 
derived from 
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   (16) 
 
and from 
 
   (17) 

 
respectively. 
 
3.2. Results 
 
Table I lists all elements in arrays and . 
 
 

Table I. Values for arrays and . 
 

Componenti   
K-type thermocouple 1.500 -1.500 

DAQ-6024E card 3.392 -3.368 
SCXI-1102 module 1.158 -1.130 

Thermocouple mounting error 0.087 -0.087 
 
 

The total uncertainty thus calculated equals  = 3.87 , while the shift reads = 0.02 ; 
therefore, = 3.85  and = 3.89 . 
As concerns random uncertainties, they are neglected. Nonetheless, in the next future  will be 
derived from end-to-end calibration data, as the method employed here seems to overestimate 
uncertainties. Consequently, random uncertainties will then be evaluated according to [2].  
 
4. HEAT FLUX ASSESSMENT 
 
4.1. Methodology 
 
The main objective of this section is the assessment of the radial heat flux at the wet surface of the inner 
tube – namely, at = 17.5 . Thermocouples monitoring wall temperatures are again disregarded, as 
water channels are the only providing data close to . If enough temperature data were available, the 
heat flux could be directly estimated from the temperature distribution in the radial direction  
 

  (18) 

 
where refers to the conductivity of the thermocouple discs [1]. However, since is not 
inferable from the experimental data at our disposal, it is first conjectured that each thermocouple can 
be approximated as a one-dimensional body of length  (see Fig. 1), diffusivity , thermal 
conductivity  and temperature distribution , with  at the thermocouple tip (that is, at ). 
The one-dimensional heat equation in Cartesian coordinates with constant  can then be simplified 
as shown in Eq. (19), with initial and boundary conditions given by Eqs. (20), (21) and (22), 

corresponding to  from Subsection 3.1 
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(19) 

(20) 
(21) 

(22) 

 
Eq. (21) assumes a large heat transfer coefficient between water and thermocouple tip. Conversely, Eq. 
(22) supposes that the heat transfer coefficient between thermocouple sheath and outer environment is 
small. 
Now, as inferable from Fig. 5, the x-axis in Eq. (19) is either parallel or antiparallel to axis , depending 
on the thermocouple location 
 

 
if

otherwise.

 (23) 

 
 
 

 
 
Fig. 5. Coordinate systems on a plane constant also called plane. The dashed circle 
represents the wet surface of the inner tube, while the dashed straight line depicts the centerline 
of the left and right thermocouple discs. All thermocouples, sketched as red segments, are parallel 
to this line, and hence not aligned with the radial heat flux. H3 and H4 are not shown as they are 
hidden under H1 and H2. Angle , shown here larger than the real one, is enclosed by the 
centerline of the side thermocouple discs and by the line between the center  and the red 
thermocouple tips.  
 
 
Besides, each thermocouple is distinguished by a specific , defined as the counterclockwise azimuthal 
angle between  and the thermocouple tip lying on the circle with radius As in [1],  is the 
azimuthal angle read by the potentiometer. 
Another quantity obtainable from experimental data is , here approximated as 

 

β ββ

 

O' 

θQ 
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if

if

otherwise.

 (24) 

 
Now, thanks to the well-known formula for the rotation of a coordinate system, the following expression 
is deduced for the radial heat flux at the wall in terms of  and only: 

 

  (25) 

 
The first term on the right-hand side of Eq. (25) is usually negligible, as can be surmised from Fig. 7. 
Consequently, in the next paragraphs, we will discuss whether our estimate of the second term on the 
right-hand side of Eq. (25) is correct, rather than try to assess the accuracy of the whole expression. 
As per Eq. (23), is found after solving Eq. (19); however, since Eq. (20) is merely an 

approximation, the heat flux calculated for  should be taken cautiously. 
Now, Eq. (19) can be solved either analytically or numerically. With respect to the numerical approach, 
Eq. (19) is discretized with the Crank-Nicolson finite difference scheme 
 

 
for

 (26) 

 
where the Courant number  is selected so as to preserve the accuracy of the results. The 
time increment  in the expression for  is the inverse of the 100 Hz sampling rate [1]. 
The heat flux is then obtained by combining a fourth-order central difference approximation of the 
derivative in Eq. (23) with the other terms in Eq. (25). 
 
Turning now to the analytical approach, Eq. (19) is assumed solvable thanks to Duhamel's theorem, 
which can be invoked only if [21],  being a function of  satisfying Eqs. (19) 
and (22) as well. Thus, the simplest choice for  is so that Eqs. (19), 
(20), (21) and (22) are rewritten as 
 

  

(27) 

(28) 
(29) 

(30) 

 
Duhamel's theorem is then applied to an auxiliary problem where  and  is called  
to differentiate it from the solution to Eq. (27). Thus,  can be found as the superposition of a 
steady-state and a homogeneous solution [3] 
 

  (31) 
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where  and  are defined as  and  respectively. 
from Eq. (31) is then included in Duhamel's superposition integral [21] 

 

  (32) 

 
so that the analytical solution to Eq. (19) is  
 

  (33) 

 
since here . As a result, the heat flux can be expressed as 
 

  (34) 

 
from Fourier's law in Cartesian coordinates. It is relevant to note that this analytical solution is actually 
susceptible to discretization schemes, as the quantity is usually approximated by finite-difference 
expressions. Thus, Eq. (34) can not be implemented as is: the heat flux will be underestimated if the 
infinite sum in Eq. (31) is truncated when additional terms become negligible, while convergence is lost 
or not achieved if the same simplification is applied to Eq. (34). Besides, integration by parts of the 
integral in Eq. (34) is not a viable option, as it would introduce local discontinuities for certain values 
of .  
A way to address these issues is to first rewrite the integral in Eq. (34) 
 

  (35) 

 
as the Crank-Nicolson solution 
 

 
for

 (36) 

 
to the Cauchy problem 
 

  (37) 

(38) 
 
In Eq. (36) Regarding thermal properties, both the analytical and the numerical 
approach resort to a harmonic mean of Chromel and Alumel properties 
 

 if or  (39) 
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where is the arithmetic mean of .  
 
4.2. Verification and Results 
 
The validity of the method described in Eq. (25) is currently under investigation. We lack experimental 
data to validate our heat-flux calculation, which was then verified with an analytical approach. 
Specifically, the wall heat flux from the temperature in Eq. (26) was compared with a formula given in 
the literature [4] which does not involve numerical integration or differentiation. This formula states that 
a linear heat flux with respect to time 
 

  (40) 
 
is expected at the surface of a slab with the same initial and boundary conditions as in our case – namely, 
Eqs. (20), (21) and (22) –, if from Eq. (29) follows Eq. (41) 
 

  (41) 

 
where the Fourier number  is defined as and is a normalizing heat flux.  
If we denote the left-hand side of Eq. (34) by , Fig. 6 (left) shows the time evolution of the quantity  
 

  (42) 

 
for , since the accuracy of  is not deemed satisfactory for smaller times. 
 
 

 

Fig. 6. Estimate of the normalized error for the CN scheme applied to the heat conduction 
equation. Both subplots were obtained with  = 1.268. Left: a time-linear heat flux is expected 
at the thermocouple tip. Right: a sinusoidal water temperature is set at the thermocouple tip. 

 
 
Now, if the fluid temperature at   changes with time  according to Eq. (6) with , = 
0.19  and = 10 , an implementation of Eq. (34) as is would be unstable for  and prone to 
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truncation errors arising from the infinite sum of integrals. Hence, Eq. (36) was used to evaluate the 
integral term in Eq. (34). Fig. 6 illustrates the time evolution of the quantity  
 

  (43) 

 
for  since, as before, the accuracy of  is not considered satisfactory for smaller times.  
Errors  and  in Fig. 6 are proved to be not significant, thus substantiating the validity of our 
procedure. 
 
With respect to final results, Fig. 7 is obtained with  = 1.18, which is deemed acceptable. As 
previously stressed, the first term on the right-hand side of Eq. (25) only contributes to a small 
percentage of the total radial heat flux, as depicted in Fig. 7 (right). The same behavior is observed 
regardless of label and position of water-side thermocouples, or of the boundary conditions in the 
experimental matrix. This implies that, even if the first term on the right-hand side of Eq. (25) were 
distorted by errors, the magnitude of the radial heat flux thus estimated would be virtually untouched. 
 
 

 
Fig. 7. Left: Radial heat flux close to thermocouple H1 (see Eq. (25)). Right: absolute value of the 
first term on the right-hand side of Eq. (25), here labelled as “azimuthal correction”. 
 
  
5. CONCLUSIONS  
 
Six thermocouples inserted into special discs have acquired water temperatures in an annulus where 
non-isothermal turbulent streams flow and mix. The goal of these experiments is to study temperature 
fluctuations and thermal fatigue-induced stresses in those BWR control-rod stems around which an 
analogous mixing occurs. 
Now, two topics have been extensively investigated here: the accuracy of the temperature readings, and 
methods for determining the heat flux at the annulus inner radius on the basis of the acquired data. As 
to accuracy, thermocouples have been first described with a two-dimensional finite-element model, 
which has then been verified by comparison with similar approaches from literature. Although this new 
model does not contribute to the evaluation of the highest uncertainty source, it is still of interest, since 
it can be further developed into a three-dimensional thermocouple model for future research on IHCPs. 
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Besides, a number of options for detrending time series and for mixing intensity parameters have been 
explored, which may lead to a better understanding of the mixing phenomenon and to additional studies 
on detrending and mixing intensity. 
Regarding the radial heat flux, the data scarcity in the radial direction has compelled us to quantify it 
through a Crank-Nicolson discretization of the heat conduction equation applied to the thermocouples. 
This method has then been partially verified by comparison with an analytical solution and with a mixed 
analytical/computational one. Besides, it has been remarked that the order of magnitude of the azimuthal 
correction is overall small, which removes the need for a thorough verification of the corrected heat flux 
and strengthens the validity of our method. Nonetheless, a more complete, three-dimensional model of 
the thermocouple discs is currently under design, to include a wider range of variables in the assessment 
process. 
 
NOMENCLATURE 
 
Acronyms  Greek symbols 

 Crank-Nicolson scheme  thermal diffusivity m2

s
 

 Duhamel’s integral  boundary of the domain 
   space increment (m) 
Roman symbols  time step (s) 

 number of unfiltered test-section samples per 
thermocouple channel from the first run at a certain 

 pair [1] samples

iter ch
 

 density kg

m3
 

 standard deviation ( ) 
 

 bias array, or systematic uncertainty array ( ) Subscripts 
 negative-side systematic uncertainty array ( )  boundary 
 positive-side systematic uncertainty array ( )  before calibration 
 Biot number  water 
 specific heat at constant pressure J

kg K
   point R in Fig. 2 

 heat transfer coefficient W

m2 K
  finite-element mesh size 

 thermal conductivity W

m K
  single-wire region 

 number of time intervals  thermocouple 
 number of spatial nodes reduced by 1  thermocouple H1 

 cylindrical coordinate system fixed to the inner tube  thermocouple H2 
 cylindrical coordinate system fixed to each thermocouple  thermocouple H3 

 domain m2    thermocouple H4 
 time (s)  thermocouple V1 
 temperature ( , unless otherwise stated)  thermocouple V4 
 array of unfiltered, detrended test-section samples from a 

thermocouple channel ( ) 
 
Superscripts 

 finite element test function  finite-element time step 
 weight  finite-difference time step 
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