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ABSTRACT 

In most numerical simulations of a fluid flow with constant properties or negligible variations, the value 
of Prt has been considered to be unity or close to it. However, numerical attempts with a constant Prt have 
never been successful in estimating the wall temperature in highly-buoyant supercritical fluids through 
vertical tubes. Several experimental data and numerical studies have indicated that Prt can be very smaller 
or larger than unity in a region of severe property variation. Recent research, both numerical and 
experimental, indicate that Prt is very likely a function of fluid-thermal variables, when the gradients of 
the physical properties of the fluid are significant. In this regard, a new concept of a variable turbulent Prt

according to the property variation was developed. Another point to be considered is that the turbulent 
boundary layer (TBL) deforms so severely that the damping function included in the turbulence modeling 
is no longer a fixed function of the turbulence properties. When a velocity overshoot (or peak) appears in 
or near the TBL, a new TBL may develop between the point of the velocity peak and the wall. 
Accordingly, the damping function in the new TBL will be different from that for the TBL without a 
velocity peak. A new formulation for the damping function, actually the thickness of the viscous sublayer, 
A+, was introduced to accommodate the TBL deformation. The new formulations for Prt and A+ were 
tested in the numerical simulation, and the results agreed well with the experimental data.  
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1. INTRODUCTION 

When the fluid temperature approaches the pseudo-critical point at a supercritical pressure, it experiences 
a severe property variation resulting in tremendous difficulties in numerical simulations. Earlier 
numerical simulations have shown, without exception, an over-prediction of the experimental data with 
strong buoyancy. The over-predictions might have been derived from an inapplicability of widely used 
turbulence models as well as the constant turbulent Prandtl number (Prt).  

Owing to the difficulties in numerical simulations, most earlier works were experimental and usually tried 
to develop correlations. A number of correlations for the prediction of the heat transfer rate in fluids at 
supercritical pressures have been proposed by various researchers, but most of them are valid only in a 
forced convection regime, as shown in the review paper by Cheng and Schulenberg [1], and a monograph 
by Pioro and Duffey [2]. The correlations available in published papers predict the heat transfer rate with 
a reasonable accuracy in a forced convection regime. However, in a mixed convection regime, all of these 
correlations fail to produce accurate predictions. IAEA sponsored and led to collaborative work among 
the various universities and institutions all over the world, and published a TECDOC [3], which 
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summarizes the current state-of-art research information on a supercritical heat transfer. 

A number of numerical works have been conducted to simulate the flow and thermal field of a fluid 
flowing at a supercritical pressure, and in doing so, the applicability of various turbulence models was 
examined. For both forced and mixed convection regimes, experimental and numerical investigations of 
the thermal and flow field at supercritical pressure was performed by Licht et al. [4]. They confirmed that 
for a simple case of deterioration, simulations using Fluent offered a qualitative insight into changes in 
fluid temperature and turbulent velocities responsible for the axial evolution of the wall temperature. Cho 
et al. [5] examined three turbulence models, i.e., RNG k-e, SST k-�, and one type of low-Reynolds 
number model, against the experimental data obtained for a tube and annulus with an equivalent hydraulic 
diameter of 4.4 mm, and reported that the performance of the three models was partially successful. He et 
al. [6] thoroughly investigated low- Reynolds number turbulence models and concluded that both the low 
Reynolds number k-� models and the V2F models were able to capture the general trends of the 
interesting wall temperature behavior observed with an upward flow in some experiments with a fluid at a 
pressure just above the critical value, while the detailed variation of the wall temperature predicted by 
using each model was rather different from that in the experiments. They also found that the effect on the 
heat transfer was almost entirely due to the shear production effect caused by the distortion of the mean 
low as a result of the strong influence of buoyancy. Using a modified version of a low-Reynolds 
turbulence model, Zhang et al. [7] successfully reproduced the data from a DNS calculation and an 
experiment by employing an algebraic flux model in calculating the turbulence production by buoyancy. 
However, its application to the other conditions is still to be proven. Zhang et al. [8] compared the 
experimental data of a heat transfer in supercritical fluids in a circular tube with the calculation results 
obtained by employing six different turbulence models and found that the Reynolds stress model (RSM) 
gave the best agreement with the experimental data, especially with the data including deteriorated heat 
transfer. The result of the RSM was not much different from that of RNG k-e, and its applicability should 
be considered in parallel with the fact that it requires solving additional equations. As discussed above, 
the numerical simulations for the highly buoyant flow failed to reproduce the particularly thermal field. 
This situation forced us to revisit the turbulence modeling and Prt and to carefully review the turbulent 
boundary layer theory, which are the basis of them. 

In most numerical simulations of a fluid flow with constant properties or negligible variations, the value 
of Prt has been considered to be unity or close to it; and the results agreed with the experimental data very 
well. However, the numerical works with a constant Prt have failed or been only partially successful in 
estimating the wall temperature in highly-buoyant supercritical fluids through vertical tubes. Several 
experimental data and numerical studies have indicated that the Prt can be much smaller or larger than 
unity in a region of severe property variation. Recent research [9,10], both numerical and experimental, 
had indicated that the Prt was very likely a function not only of fluid but also of physical properties , when 
the gradients of physical properties of fluid are significant. In this regards, a new concept of a variable 
turbulent Prt according to property variation was developed. 

As another point to be considered in the numerical simulation of fluids with strong property variations, 
the TBL deforms so severely that a fixed damping function is no longer applicable, and should be 
adjusted according to the degree of deformation. When a velocity overshoot (or peak) appears in or near 
the TBL, a new TBL may develop between the point of the velocity peak and the wall. Accordingly, the 
damping function in the new TBL will be different from the one for the TBL without a velocity peak. A 
simple function was introduced to accommodate the alteration of the damping function (or viscous 
sublayer thickness). In a conventional damping function, 1- e-y+/A+ A+ represents the thickness of the 
viscous sublayer. When the flow field undergoes a strong deformation, the shear stress will also alter, and 
is manifested in an altered value of A+.

In this paper, an attempt will be made to formulate a variable Prt and find a functional relation between A+ 
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and shear stress in the TBL.  

2. METHOD OF ANLYSIS 

2.1. Turbulent Prandtl Number 

Reynolds [11] reviewed more than thirty ways for predicting Prt and the Schmidt number (Sct). Kays [12] 
examined the then-available experimental data on Prt for the two-dimensional TBL. Prt has been treated 
as a constant of around 0.9 or unity in most earlier numerical works. However, there are other cases 
where Prt is far from unity. Prt becomes approximately 0.7 for an axi-symmetric case of a heated jet, 
while planar jet data indicate a value of 0.5; in a thermally developing wall bounded TBL, Prt is around 
unity only in the core boundary layer, and it decreases to a value of less than 0.5 [13]. In a TBL, Prt 

decreases from around 1.5 in the sub-layer to 0.7 at the outer edge of the boundary layer [14]. According 
to the experiment data provided by Dai et al. [9], the value of Prt reaches as small as 0.05. The above 
evidence strongly implies that Prt can hardly be unity or a constant very close to it at least in the case of 
heating or cooling of fluid experiencing a substantial property variation. Prt is purely a product of the 
Reynolds analogy, which claims that the mechanism of turbulent heat transfer would be very similar to 
that of the turbulent momentum transfer.  

An assessment of Prt for case (C) published in [15] was made, and the result is shown in Figure 1. 
Evidently, Prt has values much less than unity inside the turbulent boundary layer, especially in the buffer 
and viscous sublayer. The peaks are due to the strong gradient of the velocity and temperature, which is 
an inevitable irregularity originated from the application of the gradient diffusion hypothesis in the 
turbulent momentum and energy diffusion. It should be noted that the values of Prt continuously decrease 
toward the wall, contrary to the well-known experimental evidences, where, without exception, Prt
increased toward the wall. 

Figure 1. Variation of Prt with y+ at three axial locations. G = 166.62 kg/m2s, q = 30.87 kW/m2, P
= 8.0 MPa, d = 2 mm. Deduced from [15]. 

First, let us examine the steps taken to derive the Reynolds analogy for the turbulent heat transfer (the 
discussion of Kay et al. [16] was largely followed.). Imagine an element of fluid of mass m�  that moves 
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in the y direction at distance � (which is a “mixing length”). Let us assume that the effective velocity of 

fluid in the y (= R-r) direction is 2vC � . According to the momentum theorem, the shear force is equal to 
the rate of momentum transfer. Then, the effective shear stress is  

� � � ����������� uuuvCuvC
A
F

t 		�
�

 22  (1) 

The over-bar implies that the quantities are Reynolds-averaged. 
Similarly, the effective heat flux is 

� � � �pppppppt cTTcTcTccTTcvCTcvCq ����������������� 					�
�
�� 22�  (2) 

If the functional relations of incremental variation of the variables, u� , �� , pc�  and T� with respect to 

each other across distance �  are known, the exact value of Prt can be calculated. In a conventional 
approach, the property variation was generally neglected under the assumption of constant properties or a 
negligible variation of them. However, for a fluid at supercritical pressure, the two terms in the far right-
hand side of Eq. (1) and the five terms in the far right-hand side of Eq. (2) are no longer negligible, and 
can possibly be greater than the remaining terms. The second-order terms should not be neglected, if an 
extremely accurate prediction is required, since they amount to greater than 1% at some locations. When 
the mixing distance is sufficiently small, the increments u� , T� , ��  and pc� can be safely expressed as 

the mixing length times their gradient. 

From the definition of momentum and thermal diffusivity, 
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In a practical sense, the terms including the mixing length in Eq. (4) can be neglected, since they are 
negligibly smaller than the other terms. The subscript “vp” was added to indicate the turbulent Prandtl 
number is based on the physical properties. 

The value of Prt,o approaches unity or even a large number when the value of y+ is smaller than 10. In a 
viscosity-dominated region, the turbulent heat flux will also be suppressed as much as the turbulent 
momentum transfer. Therefore, it was assumed that Prt dies down toward the wall, following the same 
manner of the turbulent momentum transfer. The above argument allows us to introduce the following 
function, which is exactly the same as the damping function originally proposed by Van Driest, as the 
first factor to be added to the variable Prt.
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Considering that all gradients in the flow variables and fluid properties will be reduced to zero around the 
tube center line, Prt is expected to approach a standard value, say, t� ( = 0.9), in this direction as it does 

toward the wall. Therefore, the following function is introduced to take this assumption into account. 
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10
tanh15.02

yBf                                                      (6) 

The function f2 is completely arbitrarily, and any other function, which guarantees a smooth transition from 
the TBL to centerline, should be acceptable. 
The constant 10 is an arbitrary value given to make sure that the function 2f  varies smoothly around

By 
	 . The value of B should be carefully determined to make sure that beyond the point of By 
	 ,
the flow is in the wake region. Prt derived here is valid only in the TBL and not in the wake region, where 
the mixing length theory is no longer valid. In a TBL, the log-law and wake region are separate from each 

other at around By 
	 , and the momentum diffusivity asymptotically reaches a constant value as it 
enters the wake region, as can be found in the textbook dealing with TBL [13, 16]. The experimental data 
provided by Quarmby and Quirk [17] and Dai el al. [9] show that it may be natural to assume that Prt  
asymptotically converges to 0.9 as y approaches R, say the tube centerline or axis. In the case of TBL on a 
flat plate, the boundary condition for � at the TBL outer edge is given as a free stream value. This cannot 
be the case for a TBL in a pipe, since � is calculated as a part of the solution rather than being defined or 
given. As can be seen in references [18,19], 

 t asymptotically approaches a constant value, where 
theoretically every property or variable should have nearly zero gradients. It is strongly indicated that Prt
has a constant value being close to a conventional value of 0.9; this is consistent with the fact that Prt
asymptotically approaches a constant in TBL on a flat plate with a zero pressure gradient [20]. 

Finally, with the incorporation of the functions introduced above, the variable Prt takes the following form.  

� �vptttt ff ,21 PrPr ��
 ��                                                     (7) 

Although Eq. (7) was derived through a non-rigorous manner and are considered arbitrary, it proved to 
produce results agreeing pretty well with the experimental data when applied to the computational works. 
The mode detailed discussion of the Prt can be found in the authors’ companion paper [21].  

2.2. Behavior of Viscous Sublayer under Strong Property Gradient 

When a fluid moves at a supercritical pressure, its properties substantially vary across the pseudo-critical 
temperature. In particular, the decrease in density has the strongest influence on the fluid-thermal 
behavior through buoyancy force. 

After performing extensive numerical calculations, it was found that the velocity peak (a local maximum 
velocity or overshoot where 0
�� yu ) starts to appear in the far outer boundary layer and moves into 
the boundary layer, and after reaching a certain point, fades back away from the wall. Figure 2 shows the 
variation of the location where the axial velocity reaches the maximum. The peak moves into the 
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boundary layer very quickly and it slowly fades away. Under this circumstance, it is very unlikely that the 
viscous sublayer remains the same as in many previous numerical works. The existence of the velocity 
peak alters the TBL, and it is manifested in the change of the viscous sublayer. The eddy viscosity model 
based on the Van Driest mixing length model based on the flat-plate flow with no mass transfer cannot be 
used in the case with a strong buoyancy, since the TBL with a strong buoyancy as well as non-uniform 
properties is quite different from that for a flat-plate flow with constant properties. As discussed in the 
monograph by Cebeci [22], the viscous sublayer, which appears in the damping function as A or A+,
changes according to the pressure gradient and mass transfer (or wall injection). The effect of the pressure 
gradient and mass transfer appears in the change of the shear stress at the intersection of the linear law of 
the wall and the log-law of the wall. After an examination of the equation for ws ��  it was concluded 
that the equations appearing in [22] cannot be directly applied. The influence of the pressure gradient is 
considered different from that of the buoyancy. From the discussions given by Cebeci, it was found that 
the deformation of TBL leads to a change in the shear stress in the buffer region, and it is finally 
manifested in the ratio of shear stress between the buffer layer and wall. The shear stress ratio is related 
with the viscous sublayer thickness. 

Figure 2. Variation of the location where the axial velocity reaches maximum or du/dy = 0. 
Water, P =  23 MPa, G = 600 kg/m2s, q = 600 kW/m2

Jackson [3,23] developed a semi-empirical model of a fully developed mixed convection in a vertical tube 
to account for the strong non-uniformity of fluid properties, such as the buoyancy and acceleration, as 
follows. 

� �
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where 
T�

�   is the shear stress at the buffer layer, and CA and CB are constant coefficients.  
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4 ,

and � �� � 2/1
1

�
 bbVPF ���� . Acb and Bob are the acceleration and buoyancy parameters, respectively. 
FVP1, FVP1, and FVP3 are parameters reflecting the property variation across the TBL. Qb is a dimensionless 
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thermal expansion group, bwb kDq /� . Subscripts b and w imply the bulk and wall conditions, 
respectively. Other dimensionless groups have conventional meanings. For the cases dealt with in this 
paper, the values of Acb were negligibly smaller than that of Bob. In other words, the effect of acceleration 
was negligibly smaller than the buoyancy. The acceleration coefficient CA has an estimated value of 

10,000 for an assumed value of 	� of 30. The buoyancy coefficient CB is 4,600 based also on 30
	� .
Please note that the minus sign in Eq. (8) corresponds to the upward flow, and it should be replaced with 
a plus sign for a downward flow. 

We assumed that the relation between the viscous sublayer thickness and the shear stress follows the same 
relation as discussed by Cebeci [22], that is, the viscous sublayer thickness, A+, is a function of the square 
root of ws �� . It should be noted that s�  is the same as 

T�
� .The solution of Eq. (8) can be expressed in 

the following equations after fitting. 

� � � �
� �

383.0for1028.41057.2

006.007.048.026.0

383.0for35.21

5644

322/1

2.02/1
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�� ZZZ

ZZZ

ZZ
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��

    (9a,b)

where 4311 VPVPVPbBVPbABoAc FFFBoCFAcCZZZ 	
	
 , and it will be referred to as a dimensionless 
boundary layer deformation (BLD) parameter. ZAc and ZBo are the dimensionless BLD parameters 
attributed to the acceleration and buoyancy. The exact solution of Eq. (8) is 0.5777 for Z = 0.3849, which 
is obviously different from the value obtained from Eq. (9a), which are the curve fitted from the solution 
of Eq. (8).

It would not be unreasonable to assume that the value of A+ is a function of ws �� as shown in [22], 
although in a different functional form. When the velocity peak appears sufficiently far from the wall 
such that the effect of the appearance of the velocity peak is barely felt by the viscous sublayer. 
Considering the asymptotic behavior of ws �� for small values of Z, it can be safely assumed that A+ also 

behaves in a similar manner to that of ws �� .Thus, it is assumed that A+ and ws �� have the following 
relation.  

� � 2/1
1 wso fAA ��

		       (10) 

where 	
oA  was set as 70 as proposed by Myong and Kasagi [24] and the function 1f  is defined in Eq. 

(9a). Eq. (10) is different from that in [22], where A+ was inversely proportional to � � 2/1
ws �� . Eq. (10) is 

physically more plausible since the occurrence of the velocity peak narrows the TBL and forces it to 
restructure between the wall and the location of the velocity peak. If this is so, the viscous sublayer will 
shrink proportionally to the shrinking of the TBL. 

As the location of the velocity peak penetrates further into the TBL, the situation becomes different from 
the argument given above. Once the location of the velocity peak enters the region of the log-law of the 
wall, it severely disturbs the viscous sublayer, and Eq. (10) will become no longer valid. In this case, the 
low density fluid is concentrated near the wall. The low-density fluid region can be treated as fluid 
injection from a porous wall. The existence of the velocity peak is due to the extra volumetric flow 
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originated from the density decrease. The extra volumetric flow can be considered as a mass injection 

through the wall in a constant-property flow. The apparent dimensionless injection velocity 	
wv  can be 

expressed as  

T

T

u
uvw

�

�

� �
�� �


	 ,         (11)

T�
�  is the density at the edge of the viscous sublayer. With the introduction of the idea of apparent mass 

injection, the expression proposed by Cebeci [22] may serve our purpose. Without a pressure gradient, the 

relation between A+ and 	
wv proposed in [22] is  

� �			 �

 wo vfAA 9.5exp2 .               
(12) 

The examination of 	
wv  showed that its order of magnitude is very similar to that of Z. Accordingly, it can 

be assumed that Eq. (12) determines the value of A+ when 	
wv  is replaced with Z. Eqs. (10) and (12) 

determine the value of A+ in two extreme cases. Obviously, they do not smoothly connect to each other. 
In this regard, arbitrary hybrid functions are introduced. From the numerical experiment, it was found that 
the function connecting Eqs. (10) and (12) showed a hysteresis. The variation of A+ from Eqs. (10)
through (12) does not follow the path in Eqs. (12) and  (10).  In this regard, the following two hybrid 
functions were introduced. 

� �" #$ %
� �" #$ %01.0/2.0tanh15.0

01.0/35.0tanh15.0

2

1

�	

�	


Zg
Zg

       (13a,b) 

Eqs. (13a,b) are totally arbitrary and should be verified experimentally. However, it would serve the 

present purpose of the numerical experiment. Figure 3 shows the variation of 		
oAA  with Z. As Z 

increases, 		
oAA decreases following function 1f  [Eq. (9a)] and at a certain value of Z, it jumps onto 

function 2f  [Eq. (12)] following the hybrid function 1g . As the flow passes its maximum buoyancy or 
acceleration, Z decreases, and after following Eq. (12) to a certain value of Z and returns to Eq.  (10)
through the hybrid function 2g . The relations among the functions 1f , 2f , 1g  and 2g  are graphically 
shown in Figure 3.  

2.3. Numerical Method 

In the present study, a vertically upward flowing fluid in a uniformly heated tube was considered. The 
flow was assumed to be steady and 2-D axi-symmetric. The vertical upward direction was aligned in the 
positive x direction, and the radial coordinate was r. In the circumferential direction, the velocity 
components as well as the gradient of all flow and thermal properties were assumed to be zero. That is, 
there is no swirl. The governing equations employed in the present study were a continuity equation, 
ensemble averaged Navier-Stokes equation, energy equation, and two-equation turbulence model. The 
governing equations for a velocity field in a cylindrical coordinate with a two-equation k-e turbulence 
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model can be found in [6], and will not be repeated here. The low-Reynolds number turbulence model 
proposed by Myong and Kasagi [24] was used in this paper. 

Figure 3. Variation of A+ with Z. 

The present numerical study was conducted using an in-house code, a version modified from the one 
provided by Ferziger and Peric [25]. Basically, the SIMPLE algorithm with a single pressure correction 
step was applied. All variables were assigned to the collocated grids. Diffusive fluxes were discretized by 
busing the power law scheme, while for convective fluxes, a linear interpolation was allowed to be 
blended with an upwind approximation. The resulting matrix of the variables was iteratively solved using 
Stone’s SIP (strongly implicit procedure) method. The computational object was a vertical upward flow of 
water and carbon dioxide in uniformly heated circular tubes with several different diameters. 

The fully developed turbulent flow was used as an inlet velocity profile. An unheated section was 
provided in front of the heated section. The length was different among the cases. It did not give any 
significant effect on the calculation. The calculation domain was discretized into rectangular grids. The 

grid was refined into the wall in the radial direction. After trying several values of 	
Py  (the value of y+ at 

the first node from the wall), 5.0!	
Py was found to be optimum with the result of reasonably accurate 

converged solutions. Further refinement results in an unnecessarily long computing time with no 
improvement of the calculation accuracy.  

Although there is no unique definition of the normalized wall distance y+, most of the computational 
works performed thus far, regardless of compressible or incompressible cases, employed the definition  

wyuy 
�
	 , where  � � 2/1
wwu ��� 
 using wall properties.  Instead, in this work, an altered definition 

based on the local properties such as   � � 
�� /2/1 yy w
	  , which is called the semi-local scaling, was 
used. The only reason for the choice was that the computational results obtained in this work with the 
latter definition agreed with the experimental results better than those with the former definition. When 

only a narrow region near the wall is heated to high temperature, the use of � � 2/1
wwu ��� 
 will result in 

an unrealistically high value of y+, making the damping function approach unity more rapidly as y+

increases. When the physical properties vary considerably, the definitions of u�&and y+ greatly influence 
the numerical results through the damping function and coefficients involving y+ as an independent 
variable. An exact assessment of the effect of the definitions of u� and y+ is not available at the moment 
and is left for further research. Huang et al. [26] also indicated that semi-local scaling was the best in the 
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interpretation of their DNS calculation results of compressible turbulent channel flows. Foysi et al. [27] 
reported that the use of semi-local scaling improved the similarity in the turbulence, although a global 
similarity was not achieved. 

From the experiment of the turbulent boundary layer it is known that the viscous sublayer, especially the 
linear law of the wall region, remains unchanged regardless of the disturbance. During the calculation, the 
value of A+ was not allowed to be smaller than 10, which is the typical thickness of a viscous sublayer. 

3. RESULTS AND DISCUSSIONS  

Figure 4 shows the distribution of wall temperatures for the case of water flowing under the conditions of 
G = 600 kg/m2s, q = 600 kW/m2, and P = 23 MPa. When Prt and A+ were set as constants 0.9 and 70, 
respectively, the maximum wall temperature reached 1309 K. The high temperature remained far 
downstream and the situation was hopeless owing to the fact that any turbulence modeling failed to 
reproduce the experimental data with strong buoyancy. This was confirmed here once again. With the 
introduction of the variable Prt, only the maximum wall temperature substantially reduced to 879 K, but 
was still much higher than the experimental data although the improvement was outstanding. With the 
application of both variables Prt and A+ as a function of the parameters for buoyancy and acceleration, the 
maximum wall temperature reduced to 775 K, which was greater than the experimental data by only 30 
K. The point of the maximum temperature appeared a little earlier than the experimental data, but the 
overall performance was excellent.   

Figure 5 shows the variation of the dimensionless wall distance, 	
oy  ( 	y at 0
�� yu ), the viscous 

sublayer thickness, A+, and the dimensionless boundary layer deformation parameter, Z, for the same 
case shown in Figure 4. Before the appearance of the velocity peak, the TBL was influenced by the 
buoyancy, and acceleration A+ started decreasing. It should be noted that the minimum of A+ did not 

coincide with the minimum of 	
oy . Because Z is less than 0.08, the value of A+ was determined only by 

Eq.  (10). Once the velocity appeared, the value of Z started decreasing. This is because of the decrease in 
Grb and the increase in Re due to the expansion of the low density region into the tube centerline. Again, 
the velocity peak disappeared very slowly. The good agreement of the numerical estimation with the 
experimental data indicates that the idea of variables Prt and A+ is plausible. The spikes appearing at the 
front end of the heating are numerical oscillations originating from the severe property variation near the 
pseudo-critical temperature, and it was not possible to remove them completely using a grid refinement. 
The amplitude and frequency of the oscillation depended on the boundary conditions. 

Figure 6 shows the distribution of the wall temperatures for the case of water flowing under the 
conditions of G = 380 kg/m2s, q = 417 kW/m2, and P = 24.5 MPa. As in the previous case, the numerical 
simulation highly over-predicted the experimental data.  The effect of the variable Prt was surprisingly 
limited to the upstream of the maximum wall temperature. In the downstream of the maximum wall 
temperature, no improvement was seen. However, the overall numerical performance was still very poor. 
With the introduction of both variables Prt and A+, the numerical performance was greatly improved, as 
shown in Figure 4. In the present calculation, the wall temperature peak shifted downstream. The overall 
numerical performance was very good except for the shift of the temperature peak.  

Figure 7 shows the variation of 	
oy , A+, and Z for the same case shown in Figure 6. Contrary to the 

previous case, the value of Z reached up to 0.33, which is very close to the maximum value of the validity 
of Eq. (9a), and did not fall down below 0.24. Obviously, the value of A+ was determined by Eq. (9a) and 
Eq. (10) with the hybrid function, Eq. (13a), or possibly Eq. (13b). The velocity peak penetrated well into 
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the TBL and even reached the buffer layer. Under this circumstance, the viscous sublayer must be greatly 
influenced by the existence of the velocity peak. This is the reason for the failure of the well-known 
turbulence modelings, which are mostly based on the turbulence properties in a flat-plate flow. The 
introduction of both the variable Prt and A+ greatly improved the numerical results. The calculated wall 
temperature agreed very well with the experimental data except for the shift of the temperature peak. 

Figure 4. Distribution of the wall 
temperature along the tube. Experimental 
data after Zhao et al. [28]. 

Figure 5 Distribution of 	
oy , A+ and Z along the 

tube. 

Distribution of 	
oy , A+ and Z along the tube. 

Figure 6.   Distribution of the wall temperature 
along the tube. Experimental data after 
Alekseev et al. [29] 

Figure 7.  Distribution of 	
oy , A+, and Z along 

the tube. 

We would now like to compare the numerical results with the DNS data generated by Bae et al. [15]. 
Among the cases presented in [15], case C of mixed convection was chosen. Compared to the two 
previous cases for water, the effect of the variable Prt was negligibly small, as can be seen in Figure 8. 
With the introduction of variable A+, the numerical results showed a good agreement with the 
experimental data. The difference of the maximum wall temperature between the calculation and 
experiment was less than 1 K. Again, the axial location of the maximum wall temperature appeared 
slightly downstream of that of the experimental data. The overall numerical performance seems 
reasonably satisfactory. 
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For the present case, the value of 	
oy  quickly penetrated deep into the log-law of the wall region, as 

shown in Figure 9. The minimum value of 	
oy was 32.9. Consequently, the dimensionless parameter, Z, 

approached the maximum value of 0.53, which is much larger than the limiting value for Eq. (9a), 0.383, 
showing values larger than 0.3 over most of the heated section. As a result of the deep penetration of the 
velocity peak into the buffer region, the values of A+ remain less than 20, resulting in a reduction of the 
wall temperature. The increase in Z generally reduces the Nusselt number, which is based on the bulk 
properties. However, the increase in Z simultaneously reduces the wall temperature by deforming the 
TBL, in other words, narrowing the viscous sublayer. At a certain value of Z, the wall temperature 
reducing effect of Z overwhelms the Nusselt number reduction (wall temperature increasing) effect, and 
the wall temperature actually starts decreasing after showing an increasing tendency. 

Figure 8.  Distribution of the wall temperature 
along the tube. Experimental data after Bae et 
al. [15] 

Figure 9.  Distribution of 	
oy , A+ and Z along 

the tube 

Figure 10 shows the variation of the acceleration and buoyancy parameter, Zac and ZBo. For the case of 
water flowing upward under the conditions of G = 600 kg/m2s, q = 600 kW/m2, P = 23 MPa (Figure 10a), 
ZBo dominated the Zac in the front part of the heating zone and then dropped to a value smaller than Zac.
Judging from Figure 10a, it is advisable not to neglect the influence of the acceleration in the analysis of a 
flow with a strong buoyancy. The spike at the entrance region of the heated zone is associated with the 
numerical oscillation. In the case of CO2 flowing upward under the conditions of G = 166.62 kg/m2s, q = 
30.87 kW/m2, and P = 8 MPa (Figure 10b), ZBo dominated Zac all over the heated zone. The overall 
dominance of ZBo is because the bulk temperature did not reach the pseudo-critical temperature at the exit 
of the heated zone. It is expected to drop down to a smaller value than Zac if the heated zone is sufficiently 
long. Clearly, the influence of the acceleration is not negligible in this case either. 

4. CONCLUSIONS  

An attempt was made to numerically simulate the highly buoyant flow with the introduction of variable 
Prt, and variable viscous sublayer thickness, A+, appeared in the damping function included in the well-
known turbulence modelings. 

Prt was developed by extending the Reynolds analogy to include the effect of the property variation. A+ 

was assumed to vary with the dimensionless buoyancy and acceleration parameters, ZAc and ZBo. The 
dependence of A+ to ZAc and ZBo was assumed to be different between two zones divided by the value of 
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Z.  For a smaller Z, A+ was assumed to decrease in proportion to ws �� , and for a larger Z, according to 

the exponential function of the dimensionless apparent wall injection, 	
wv .

(a) (b) 
Figure 10. Variation of the ratio of acceleration parameter against buoyancy parameter.

The numerical simulations with the inclusion of variables Prt and A+ resulted in an excellent agreement 
with the experimental and DNS data for water and CO2. From the examination of ZAc and ZBo it was 
concluded that the influence of the acceleration should not be neglected. 

Although a further refinement of the functions developed in this paper for the dependence of Prt and A+ on 
the dimensionless boundary layer deformation parameter, Z, is necessary, it was clearly identified that the 
introduction of variables Prt and A+ will lead to a better reproduction of the highly buoyant experimental 
data.  
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