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ABSTRACT  
 
In this study, a non-intrusive and stochastic method is used to accomplish an Uncertainty and Sensitivity 
(U&S) analysis in a control rod drop transient. This transient is included in the Anticipated Operational 
Occurrences (AOOs). The U&S analysis and perturbation generation is done through the DAKOTA 
statistical tool, developed at Sandia National Laboratories. As input parameters to the U&S analysis, 43 
different thermal-hydraulic variables are chosen. Similarly, three different output parameters are chosen: 
total reactor power, enthalpy and reactivity. The number of total perturbations (146) is obtained using 
Wilks’ formula considering double tolerance limits with 95% of uncertainty and 95% of statistical 
confidence for the output parameters. The results include the tolerance bounds of output parameters and 
sensitivity of input parameters as a function of time. Therefore, the most important thermal-hydraulic 
variables, regarding this AOO, could be isolated. As a new feature in the thermal-hydraulic model, the core 
is modeled using fully 3D components. A cartesian vessel is used to model the fuel assemblies (without 
collapsing) and a cylindrical vessel is used to model the bypass and downcomer zones. 
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1. INTRODUCTION  
 
The need for safety in nuclear power plants was increased recently due to the Fukushima accident. 
Extensive relevant literature can be found. For example, [1] and [2] give a good analysis for quantification 
of uncertainty analysis related to nuclear power plant computer codes. Moreover, relevant state of the art 
for Best-Estimate (BE) safety analysis and uncertainty evaluation can be found in [4] and [3]. In the present 
study, Uncertainty and Sensitivity Analysis (U&S) is applied as described in the literature to identify the 
uncertainty of the model output parameters and how their variance is apportioned by each model input 
parameter. This is done propagating the error through some physical model or computer code (thermal-
hydraulic and neutronic coupled codes in this case). 
 
U&S is related to safete analysis. The objective of safety analysis is to ensure that enough margin exists 
between real value and the threshold value at which barriers against radioactive release would fail. See 
Figure 1 for a graphical definition of safety margins and uncertainty [1]. To accomplish this objective, the 
Nuclear Regulatory Commission (NRC) includes the U&S analysis as additional and required information 
needed for a Best-Estimate (BE) value. Best-Estimate codes are used currently to predict and simulate 
different kind of transients in nuclear reactors. Thus, U&S analysis studies are becoming more and more 
common in scientific literature. Uncertainty is inherent to any experiment and computer code, it arises from 
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the lack of physical knowledge, in the implemented computer code, and also the error introduced by the 
user in the input deck values. Moreover, uncertainty could be divided into two different components [6], 1) 
stochastic or aleatory uncertainty is irreducible since it is inherent to the aleatory or random behavior of the 
system under study and, 2) subjective or epistemic uncertainty is reducible but arise from the inability to 
measure or specify the true value. 
 
 

 

Figure 1: Safety margins and uncertainty definitions [1]. 

 
U&S methods could be classified into deterministic or stochastic methods. Global Perturbation Theory 
(GPT) is used in deterministic codes, and sampling methods fall into the stochastic methods. In this study, 
a sampling method is used to propagate the uncertainty through a thermal-hydraulic code coupled to a 
neutronic code. The thermal-hydraulic code used is TRACE V5P3 and the neutronic coupled code is 
PARCS v3.0. For the U&S analysis the toolkit DAKOTA [7], developed at Sandia National Laboratories, 
is used to propagate the uncertainty and the output uncertainty apportioned by each input parameter 
(sensitivity). 
 
This paper is divided into five sections. Section two gives the details related to the methodology using 
DAKOTA. Section three describes the models used in the thermal-hydraulic and neutronic codes. The 
thermal-hydraulic model makes use of fully 3D components to simulate the fuel assemblies, bypass and 
downcomer [8]. Next, section four shows the U&S obtained results. Finally, section five contains the 
conclusions and future work. This study is complemented with a previous study, by the same authors, 
following the same methodology but for neutronic variables instead [9]. 
 
2. UNCERTAINTY AND SENSITIVITY METHODOLOGY 
 
As exposed in section one, the toolkit used for U&S analysis is DAKOTA. It can be used to solve a big 
range of problems: optimization, parametrical studies, design of experiments, etc. In this study, however, it 
is used to Uncertainty Quantification (UQ) and Sensitivity Analysis (SA). The methodology is explained 
next. 
 
2.1. Uncertainty Propagation 
 
Every computer code or model has certain uncertainty inherent to its randomness or lack of knowledge 
related to the physical models implemented. This uncertainty can be quantified. If perturbations are applied 
to each of the code input parameters, using a (quasi-random) sampling method, these parameters could be 
considered as random variables, called input uncertainty space [6]. Thus, the output parameters, due to the 
input uncertainty propagation through the code, can also be considered random variables. This is called 
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output uncertainty space. This is represented in Figure 2, where f represents the computer code under study. 
This code has several input parameters ݔଵ, to ݔ௩೔೙ , and several output parameters, ݕଵ to ݕ௩೚ೠ೟, each input 

parameter is perturbed with a different perturbation factor, ߜ௜. 
 
 

 

 
 
These perturbation factors must be generated in a random sampling process, the most common sampling 
methods used are Simple Random Sampling (SRS) and Latin Hypercube Sampling (LHS) [9], the latter is 
discussed more deeply later in this section. An input parameter matrix is needed, each input parameter set 
is perturbed with a randomly generated perturbation factor and used in a single code run; later an output 
parameter matrix is gathered, one output set per code run. The whole process is repeated n times, the 
determination of the parameter n is an important feature of the methodology. The Wilks’ assumption [10] 
is used to define the number of runs or sample size. Wilks’ formula gives the minimum sample size for a 
certain population coverage with a certain confidence. If we define Į as the uncertainty and ȕ as the 
statistical confidence for the output variables, we can calculate the number of runs, n, using Equation 1 for 
simple tolerance limit and Equation 2 for double tolerance limits. 
 

1െ ௡ߙ ൒  ߚ
 

(1) 

1െ ௡ߙ െ ݊(1െ ௡ିଵߙ(ߙ ൒  (2) ߚ
 

Applying Equation 2 (double tolerance limits), the minimum sample size obtained (or number of runs) with 
95% uncertainty and 95% of statistical confidence for the output variables is 93 [10]. However, it was 
recently published that the minimum number of runs required for a first order double tolerance limit in a 
95/95 case is 146 [11]. This is the sample size used in this study. 
 
When a parametric sampling method is used, the sampling is done one at a time and the model code is run 
once for each sampling. This procedure can require a prohibitive number of runs to obtain good statistics. 
For parametric approaches, the number of total samples depends on the number of input parameters. 
Nevertheless, if a nonparametric approach is used all uncertain parameters are sampled together and the 
number of samples does not depend on the number of input parameters any more [3]. Thus the number of 
runs can be substantially reduced  
 
The uncertainty method GRS’s (Gesellschaft für Anlagen und Reaktorsicherheit) developed in Germany is 
used. This method determines the number of samples using Wilks’ formula, but instead of parametric 
sampling it uses nonparametric sampling [3]. As a consequence, the number n of code runs is independent 
of the number of input uncertain parameters, it only depends on the uncertainty and the statistical confidence 
level used [4]. The main drawback is that the input parameters uncertainty must be known in advance. The 
input uncertainty is defined using a Probability Distribution Function (PDF). This is the most risky step in 
the methodology since it affects directly to the results obtained. Frequently, the PDF definition must be 
reevaluated after some code runs. These PDFs are used by the sampling method to generate the perturbation 
matrix. The uncertainties distributions are obtained from the literature or by an expert opinion. The most 

f 

Computer code or 
model 

ܺ௡ = ൦ ଵݔ + ଶݔଵߜ + ௩೔೙ݔڭଶߜ + ௩೔೙൪௡ ௡ܻߜ = ൦  ௩೚ೠ೟൪௡ݕڭଶݕଵݕ

Figure 2: Uncertainty quantification methodology using a computer code or model 
with several input parameters, X, and output parameters, Y. 
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common PDFs are the normal N~(µ,ı) and uniform U~(m,M) distribution; although other distributions 
could be used, such as log-normal, triangular or polygonal for continuous variables and Poisson or binomial 
for discrete variables. 
 
For this study, 43 different thermal-hydraulic parameters are chosen as input parameters, details are given 
in section 3.2. Besides, there are only 3 different variables as output parameters: reactivity, power and 
enthalpy. These output parameters are chosen because they provide enough information to define the reactor 
state. They involve the main neutronic parameters and predict the current reactor evolution. Moreover, 
physical limits are set to ensure reactor integrity (enthalpy). 
 
2.2. Sampling Method 
 
Each perturbation set is obtained using a sampling method. In this study two different sampling methods 
are used and compared: Simple Random Sampling (SRS) and Latin Hypercube Sampling (LHS). Both are 
quasi-random methods, however, LHS is considered to be statistically equal or better than SRS. LHS is an 
efficient stratified Monte Carlo sampling method that allows sampling using the predefined parameter PDF. 
The main advantage of LHS over SRS is that LHS gets a better sample distribution over the sample space 
and thus, a better coverage of input uncertainty space [12]. LHS sampling is obtained with three steps, (1) 
each input PDF is subdivided in n subintervals with equal probability according to each PDF, (2) a random 
point is generated in each subinterval for each input parameter, and (3) a random combination of points 
generated in previous step, without replacement, is used to generate a sample. The process is repeated until 
all n samples are randomly generated. A couple of advantages could be added to LHS. First, it is more 
robust for codes or models with non-linear effects. Second, with SRS if there are not enough samples, a 
subset of low probability but high sensitivity (over output) could be missed. It is shown that the variance of 
the predicted output mean using LHS is always less or equal than the variance of the predicted output mean 
using SRS, Equation 3. 
(௅ுௌ(ݕ)෠ܧ)ݎܸܽ  ൑  (3) (ௌோௌ(ݕ)෠ܧ)ݎܸܽ
 
2.3. Sensitivity Measurement 
 
In addition to uncertainty, DAKOTA also provides the calculation for sensitivity analysis. Qualitatively, it 
defines how the input uncertainty is spread among output parameters. Thus, it is possible to identify which 
uncertainty among the input parameters should be reduced in order to obtain the biggest reduction in output 
uncertainty. To this end, DAKOTA provides the Simple Correlation Coefficient (SCC) and Partial 
Correlation Coefficient (PCC) in matrix format for all input and output parameters. SCC shows the 
correlations among different parameters, its value is bounded between -1 and +1. For highly correlation 
parameters its value would be near +1 or -1 (direct or inverse correlation). Moreover, if the value is near 
zero, the parameters are poorly correlated. However, the value of SCC could be influenced by other model 
parameters. To avoid biased SCC, the PCC provides the correlation between two parameters while holding 
all the other parameters constant. The value meaning is the same as in the SCC case. See Equation 4 for 
SCC formula between parameters x and y. Equation 5 provides the formula for PCC between parameters x 
and y holding a third parameter, z, constant, rxy|z. 
ܥܥܵ  = ௫௬ݎ =

(ݕ)ݎܸܽ(ݔ)ݎඥܸܽ(ݕ,ݔ)ݒ݋ܥ
          െ 1 ൑ ܥܥܵ ൑ +1 

 

(4) 

ܥܥܲ = ௫௬|௭ݎ =
௫௬ݎ െ ௬௭ට(1െݎ௫௭ݎ ௫௭ଶݎ )(1െ ௬௭ଶݎ )

          െ 1 ൑ ܥܥܲ ൑ +1 (5) 
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Moreover, this is only valid for linear relationships. For non-linear models the values are ranked, averaged 
values are used if ties are present. Ranked values could be used with previous formulas. DAKOTA also 
calculates the Simple Rank Correlation Coefficient (SRCC) and Partial Rank Correlation Coefficient 
(PRCC), their values have the same meaning explained before. In this study the PRCC is used to represent 
sensitivity analysis. 
 
Finally, the DAKOTA methodology to calculate U&S is explained in 4 simple steps. (1) Identify the model 
inputs parameters whose uncertainty will be propagated and define their PDFs. (2) DAKOTA pre-process: 
use an appropriate sampling method to sample the input space, ݔଵ to ݔ௩೔೙, according to each PDFs. Thus, 

obtaining n perturbation sets, ߜ௜, (each set contains perturbations for each input parameter). (3) Run the 
computer code or model n times and gather the output space, ݕଵ to ݕ௩೚ೠ೟, in a matrix. (4) DAKOTA post-
process: feed the perturbation and output space matrix to DAKOTA to calculate the related U&S among 
other statistical data. 
 
3. MODEL S & UNCERTAINTIES  
 
3.1. Thermal-Hydraulic Model  
 
TRACE thermal-hydraulic code is used for this study. The model used presents a fully 3D PWR core, it is 
based on previous studies [8]. It is modeled using vessel 3D components, one cartesian vessel to represent 
the different fuel assemblies one by one, and one cylindrical vessel for the bypass and downcomer. Thus, 
this model can better simulate asymmetric phenomena and cross flow between assemblies, the latter is 
especially important for PWR. Due to the large number of components and input deck work, the process to 
create this model is automatized using MATLAB. 
 
The cartesian vessel is modeled to have the corner cells with fraction flow area equal to zero, thus it 
resembles the actual radial mapping used in PARCS neutronic code. One heat structure component is 
coupled for each fuel assembly with the same axial distribution. Moreover, the cylindrical vessel is 
discretized in two radial cells and three azimuthal sectors. The inner radial cell represent the bypass and the 
outer cell the downcomer. Heat structure components are used in the cylindrical vessel to model the heat in 
the bypass and the core shroud heat transfer (between inner and outer radial cells). Three breaks and three 
fills are used to simulate a different hot and cold leg respectively, each break and fill is attached to a different 
azimuthal sector in the cylindrical vessel. Both vessels are connected side-wards by one cell pipe 
component at all axial levels, and axially by single junctions at bottom and top of each fuel assembly. See 
Figure 3 for a sketch of a simplified TRACE model using 3D vessel components, the flow path is shown 
using blue arrows. 
 
In order to test the methodology, a control rod drop transient occurrence is simulated. This transient is 
included in the Anticipated Operational Occurrences (AOOs). An AOO is classified as an occurrence (and 
not as an accident) because reactivity is removed from the core (control rod is inserted and more neutrons 
are absorbed). To assure a proper steady state convergence, 50 seconds of null transient are simulated. Then 
the control rod involved in the occurrence starts being inserted and within 2.06 seconds it is totally 
introduced. 
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Figure 3: Simplified TRACE model for PWR 3D core representation by means of a cartesian 

vessel (fuel assemblies) and a cylindrical vessel (inner radial cell bypass and outer cell 
downcomer), sketch using SNAP tool. 

 
One important fact of this model, as said before, is the simulation of cross flow among different channels 
and bypass. However, this makes the bypass flow oscillate sharply, obviously this is an unreal effect. To 
solve this problem the axial and radial fri ction factors must be adjusted. This process must be repeated for 
all three azimuthal sectors. Fortunately, an iterative process in MATLAB is developed to adjust the 
corresponding friction factors [8]. Figure 4 shows an example of bypass flow with different azimuthal 
sectors comparing the adjusted TRACE 3D model and the equivalent RELAP 1D model. Abscissa axis 
shows the axial cell number in the axis (z) direction. 
 
 

 

Figure 4: Bypass flow for three different azimuthal sectors comparing TRACE 3D model (dotted 
lines) and RELAP 1D equivalent model (stright lines), flow as function of axiall cells in axial 

direction. 
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3.2. Thermal-Hydraulic Uncertainty  
 
Research in the literature was made to find what thermal-hydraulic variables should be included in the 
uncertainty propagation, what their uncertainties are and how to fully characterize uncertainty distributions 
[13-17]. A list of thermal-hydraulic variables is listed in Table 1 and  
 
Table 2 for normal and uniform distributions, respectively. They also show the parameters defining the 
PDFs and the reference where the information was found. 
 
 

Table 1: Thermal-hydraulic variables to propagate through TRACE following a normal 
distribution  

Definition  Variable Mean Stand deviation Reference 
Output pressure preso 1.0 0.002 Expert Opinion 
Reactor power power 1.0 0.005 Expert Opinion 
Inlet mass flow massi 1.0 0.002/0.001 Expert Opinion 
Wall roughness wallr 1.0 0.25 Expert Opinion 

Assembly flow area Farea 1.0 0.01 [14], page 13 
Pitch to diameter ratio Pdrat 1.0 0.05 Expert Opinion 

Radial fuel peaking factor frpwd 1.0 0.01 [14], page 13 

 
 

Table 2: Thermal-hydraulic variables to propagate through TRACE following a uniform 
distribution  

Definition  Variable Lower limit  Upper limit  Reference 
Gap heat transfer coefficient hgapc 0.65 1.35 [15], page 50 

Grid friction factor kfacf 0.95 1.05 [15], page 50 
Hydraulic diameter hydim 0.995 1.005 [15], page 50 
Fuel heat capacity mheat0 0.99 1.01 [16], page 60 
Clad heat capacity mheat2 0.97 1.03 [16], page 60 

Fuel thermal conductivity mcond0 0.954 1.046 [16], page 60 
Clad thermal conductivity mcond2 0.94 1.06 [16], page 60 

Inlet flow temperature tliqi -0.5/-0.2 0.5/0.2 [14], page 13/Expert 
Gap size gapsz -7.4E-6 7.4E-6 Expert Opinion 

Critical heat flux multiplier chfml -0.4 0.3 [17], page 3.24 
Heat fraction to bypass fbyph -2.375E-5 2.375E-5 Expert Opinion 

Heat fraction to moderator fmodh -9.2625E-4 9.2625E-4 Expert Opinion 

 
The variables in italics are treated as different input variables for each assembly type, there are four types 
(3 fuel types plus bypass). Its PDF definition is not changed for each assembly type. Thus, the total number 
of input parameters is 43. These data are introduced directly in DAKOTA tool to generate the appropriate 
perturbation factor matrix. For the variables inlet mass flow and inlet flow temperature, two different sets 
of parameters are shown (a/b), the former corresponding to the LHS sampling and the latter to the SRS 
sampling. For both variables the uncertainty was deliberately decreased because some simulations using 
SRS sampling failed while using the uncertainty defined for LHS sampling. 
 
3.3. Sensitivity approximation 
 
According to [9], two different sensitivity approximations are used. First approximation, called maximum 
peak approximation, calculates the U&S analysis only for the time where the absolute maximum output 
parameter value is found. Thus, only three U&S analysis are run, one per output parameter. This 
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approximation gives sensitivity information for the most critical transient time step. The second 
approximation, called index dependent approximation, calculates the U&S analysis for each time step for 
the whole simulation and for all three output parameters. This approximation gives sensitivity information 
for the whole transient simulation, thus, a wider sensitivity view is obtained. 
 
3.4. Neutronic model 
 
PARCS code is used to build the neutronic model. The 3D neutronic model is spatially discretized into 
17x17x34 cells. These neutronic cells represent both the core and the bypass. Fourteen different control 
banks are modeled. Moreover, there are 3 types of fuel assemblies and 1379 different cross section 
compositions. Two prompt neutron groups and six delayed neutron groups are defined. PARCS is coupled 
with TRACE thermal hydraulic code. 
 
The cross section libraries are obtained using the coupled codes CASMO4-SIMULATE3 and the SIMTAB 
methodology, developed together by the UPV and Iberdrola. Cross sections are homogenized and collapsed 
and have the nemtab/r format. 
 
4. RESULTS 
 
The results are divided in subsections, each one for a different approximation. 
 
4.1. Maximum peak approximation 
 
Figure 5 shows the most sensitive input parameters for each output parameter (enthalpy, power & reactivity) 
using LHS sampling method. The same is shown in Figure 6 using SRS sampling method. Following the 
previous study [9], an input parameter is considered to be sensitive enough if its PRCC is bigger than 0.16. 
 
For the maximum peak approximation, see Figure 5, out of the 43 initial input parameters, the number of 
sensitive input parameters (PRCC bigger than 0.16) are 10 for the enthalpy, 13 for the power and 14 for the 
reactivity output parameter. That is with LHS sampling method. However, using the SRS sampling method, 
Figure 6, there are 5 (enthalpy), 16 (power) and 10 (reactivity) input parameters sensitive enough for each 
output parameter. See Table 3 for more details. 
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Figure 5: Maximum peak approach, PRCC for the most sensitive input parameters (PCRR > 0.16) 
using LHS sampling method. 

 
 

 

Figure 6: Maximum peak approach, PRCC for the most sensitive input parameters (PCRR > 0.16) 
using SRS sampling method. 

619NURETH-16, Chicago, IL, August 30-September 4, 2015 619NURETH-16, Chicago, IL, August 30-September 4, 2015



4.2. Index dependent approximation 
 
Figure 7 shows for the enthalpy output parameter, its mean (solid black line), the lower and upper 95% 
confidence interval (dashed red lines) and the maximum/minimum for each time step among all samples 
(dot-dashed blue lines). The same information is shown in Figure 8 and Figure 9 for the power and reactivity 
(power is normalized to one). The left image shows the response for the whole simulation time. Whereas, 
in the right image, a zoom is used over the peak functions to appreciate the different lines. Only the LHS 
sampling method results are shown, results for the SRS sampling method are similar. For all results, a null 
transient for 50 seconds is run prior to the control rod drop transient. 
 
 

  
Figure 7: Enthalpy mean (solid black line), the lower and upper 95% confidence interval (dashed 

red lines) and the maximum/minimum for each time step among all samples (dot-dashed blue 
lines). LHS sampling results. Peak zoom is shown on the right. 

 
 

  
Figure 8: Power mean (solid black line), the lower and upper 95% confidence interval (dashed 
red lines) and the maximum/minimum for each time step among all samples (dot-dashed blue 

lines). LHS sampling results. Peak zoom is shown on the right. 
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Figure 9: Reactivity mean (solid black line), the lower and upper 95% confidence interval 

(dashed red lines) and the maximum/minimum for each time step among all samples (dot-dashed 
blue lines). LHS sampling results. Peak zoom is shown on the right. 

 
Figure 10 contains the standard deviation and its lower and upper 95% confidence interval (dashed red 
lines) for the enthalpy (left) and reactivity (right) output parameter. Only the LHS sampling method results 
are shown. 
 
 

  
Figure 10: Enthalpy (left) & reactivity (right) standard deviation (solid black line) and the lower 

and upper 95% confidence interval (dashed red lines). LHS sampling results. 

 
Regarding the index dependent approach, from Figure 7 to Figure 10, it can be concluded that the most 
uncertain output parameter, using coupled TRACE/PARCS, is the enthalpy. Its uncertainty is almost 2%, 
whereas that for the power and reactivity is 0.05% and 0.6% respectively. 
 
With respect to the index dependent sensitivity analysis, Figure 11 contains the PRCC values as a function 
of time for all three output parameters. Only the 14 most sensitive input parameters are shown. 
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Figure 11: Index dependent approach, PRCC for the most sensitive input parameters and the output parameters 
(enthalpy, power & reactivity). Left column contain LHS sampling method results, whereas right column shows 

the results for the SRS sampling method. 
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Sensitivity analysis, Figure 11, shows that the most sensitive input parameters experience a great change in 
sensitiveness when the Anticipated Operational Occurrences (AOO) occur (50 seconds). The most 
sensitive input parameter is, again, the gap size for the assembly type 3. For the enthalpy, the gap size is 
sensitive all the time, whereas, for the power and reactivity, the sensitivity experience a sign change when 
the rod is dropped. 
 
Other input parameters to consider are the boundary conditions (BC). The inlet liquid temperature is always 
the most important BC input parameter, except for power using SRS. This is followed by output pressure 
for enthalpy and inlet mass flow for reactivity. For the power output parameter the second most important 
input parameter is inlet mass flow or inlet liquid temperature, for LHS and SRS respectively. 
 
5. CONCLUSION & FUTURE WORK  
 
In this study a U&S analysis for 43 different thermal-hydraulic parameters was performed. A probabilistic 
uncertainty method (GRS) with nonparametric sampling was used, the number of samples or code runs was 
determined using Wilks’ formula. The PDFs for the 43 uncertain input parameters were obtained from the 
literature whenever possible, see Table 1 and Table 2. Two different approximations were used 1) according 
to the maximum peak value, and 2) index dependent approach, where the sensitivity coefficients are 
obtained as a function of time. 
 
Regarding the first approach, Table 3 show in detail the uncertain input parameters according to each output 
parameter and sampling method used. The input parameters are sorted according to its sensitivity. 
 
 
Table 3: List of most sensitive input parameters for the maximum peak approach as a function of 

output parameter and sampling method used. 
Enthalpy Power Reactivity 

LHS SRS LHS SRS LHS SRS 

gapsz3 
pdrat3 
tliqi  

frpwd1 
mheat3 
gapsz2 
farea2 
kfac3 
kfac2 

hydim0 

gapsz3 
pdrat3 
tliqi  

kfacf3 
mheat3 

gapsz3 
farea3 
kfacf3 
tliqi  

massi 
preso 
farea0 
kfacf1 

mcond1 
pdrat2 
mheat3 
kfacf2 
farea1 

gapsz3 
kfac3 
farea3 
preso 
massi 
farea0 
kfacf2 
hgapc0 
kfacf1 

mcond1 
chfml 

mheat3 
gapsz2 
farea2 
frpwd1 
pdrat2 

gapsz3 
preso 
farea3 
kfacf3 
massi 
tliqi  

farea0 
kfacf1 
mheat3 
pdrat3 
pdrat0 
kfacf2 
hydim0 
pdrat2 

gapsz3 
farea3 
preso 
kfacf3 
frpwd1 
kfacf2 
farea0 
kfacf1 
chfml 

mheat3 

 
As seen in this table, the fuel-clad gap size in assembly type 3 is always the most important input parameter 
for both sampling methods. The difference compared to the second most sensitive input parameter is 
important. The gap size has a positive PRCC for the enthalpy and negative PRCC value for the power and 
reactivity. On one hand, if the gap size is increased, then the fuel temperature is also increased and thus, 
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the enthalpy increases. On the other hand, due to the increase of fuel temperature and the Doppler effect, 
the absorption cross section is also increased and thus, the power and reactivity decreases. 
 
The first three most important input parameters are the same regardless of the sampling method used (for 
power and reactivity the second and third parameter are swept). However, there are some disagreement 
with the other input parameters. Sensitivity coefficients are expressed as the fraction of uncertainty 
apportioned by each input parameter. Thus, the first three input parameter fractions make the biggest 
contribution to the uncertain output parameters. The other input parameters have a little contribution. 
Therefore, a little change due to the sampling method could change the sensitivity ranking. 
 
For both approaches, the assembly type 3 is always the assembly with more sensitive input parameters, then 
assembly 2 and 1 are, roughly, equally sensitive, finally assembly type 0 (bypass) is the less sensitive. The 
great importance of assembly type 3 input parameters can be assessed using Figure 12. A great fraction of 
the core is represented using this assembly type, thus, a slight change in its input parameters affects the 
output parameters significantly. Mainly, the bypass does not have a great effect on the output parameters 
studied. However, its flow area is significant enough, it greatly affects the core flow and thus the power and 
reactivity. 
 
 

 

Figure 12: Fuel type radial mapping. 

 
In a previous study [9] the U&S analysis was done using the main cross sections as input parameters. As it 
was a first methodology try, the PDFs definitions were unreal. In this study it has been shown how to use 
the same methodology using thermal-hydraulic variables as input parameters and using more accurate 
PDFs. As a future work, uncertainty will be propagated through the cross section process generation: 
collapse, homogenization and burn-up. Therefore, proper PDFs will be available for the main cross sections 
in the neutronic code. Thus, the cross section and neutronic parameter uncertainties could be propagated 
through the burn-up and thermal-hydraulic/neutronic codes. 
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NOMENCLATURE  
 

xi: input parameter with index i 
yi: output parameter with index i 
vin: number of total input parameters 
vout: number of total output parameters 
įi: perturbation for input parameter with index i 
Į: uncertainty for Wilks’ formula 
ȕ: statistical confidence for the output variable 
n: total number of runs using Wilks’ formula 
SCC: Simple Correlation Coefficient, also represented as rxy, sensitivity coefficient between any two 
general parameters x and y 
r xz: SCC between any two general parameters x and z 
PCC: Partial Correlation Coefficient, also represented as rxy|z, sensitivity coefficient between any two 
general parameters x and y and holding a third general parameter constant, z 
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