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ABSTRACT

In sub-cooled flow boiling, bubbles nucleate along the wall, grow rapidly, and then detach from the

nucleation site. The growth rate of the bubble (and local heat transfer coefficient) is greatly enhanced by

the presence of a micro-layer. This region contains a liquid film that transfers the conducted heat from

the wall to the liquid-vapor interface. The thickness of the liquid microlayer affects bubble growth rate

as it slides along the wall. The shape of the liquid-vapor interface is determined by a balance of forces

due to liquid drag, interface curvature, hydrostatic head, and disjoining pressure. Although most of the

heat from the high heat flux is utilized in evaporation through the film later on the nucleation site, this

phenomenon is still not yet fully understood. Due to the small spatial scale of the micro-layer relative to

the bubble diameter and domain size, computational analysis has proven particularly challenging. In the

present work, the unsteady mass, momentum, and energy equations for the microlayer region are

solved. The model describes the liquid flow in an evaporating interface of a vapor formed during

sub-cooled boiling. The equations are coupled with interface curvature and pressure phase equations to

obtain a fourth-order nonlinear ordinary differential (ODE) equation of the micro-layer thickness. The

analysis was implemented in MATLAB by using the 4th-order Runge Kutta method. The model is

applied to the case of boiling of high-pressure water into steam, of particular relevance to the nuclear

industry (LWR applications). It is also of relevance to other high-pressure boiling applications, such as

conventional power plants. The effects of varying the wall heat flux and system pressure on the

micro-layer thickness and time evolution are also analyzed for the steam-water case.
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1. INTRODUCTION

When a bubble is nucleated on a wall, a thin liquid microlayer with thickness of O(10 μm) is present

under it [1]. The bubble growth and local heat transfer coefficient is enhanced by the microlayer. This

however, results in the diminishing of the microlayer thickness due to evaporation. Eventually, a dry

surface area is formed around the nucleation site and the radius of this dry spot gradually increases with

time. The bubble microlayer has a significant contribution to the growth rate of a vapor bubble.

Analysis of the microlayer at high pressure, high heat flux conditions will improve the prediction of the

bubble growth rate as it slides along a heated wall in a nuclear reactor.

Fig. 1 illustrates the microlayer beneath the bubble. θ1 is the traditional contact angle in the macro

region while θ2 is the micro-contact angle. Fig. 1 also shows the dry spot radius rd, bubble root radius
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Rb, and microlayer thickness δ as a function of radius r and time t.

Figure 1: Schematics of the microlayer beneath a bubble [2]

The bubble microlayer has attracted significant research interest due to its importance to bubble growth.

Jawurek [3] studied the details of microlayer geometry and bubble growth in a cylindrical boiling tank

using high speed interferometric photography. It was reported that the microlayers were wedge-shaped

in cross-section for all cases. The result also indicated that microlayers of bubbles with zero waiting

time suffered disturbances ranging from mild fringe distortion to total fragmentation.

Li et al. [4] employed reflectance-based fiber-optic laser technique to measure the thickness of the

liquid microlayer between a cap-shaped sliding bubble and an inclined heated wall. Millimeter-sized

spherical bubbles of FC-87 vapor were injected near the lower end of a uniformly heated aluminum

plate. The heated surface was inclined at angles of 2 − 15o from the horizontal. The experiment was

done with bulk temperature of 25oC and at atmospheric pressure. It was reported that the microlayer

thickness ranged between 22 − 55 μm for the cap-shaped bubbles. Their results also indicate that the

microlayer thickness is independent of bubble dimension. However, the average microlayer thickness

decreased with increasing inclination angle.

Utaka et al. [5] investigated the effects of gap size, velocity of the vapor bubble forefront, and distance

from the incipient bubble site on the microlayer thickness in a narrow gap mini/micro-channel boiling

system. The variation of microlayer thickness relative to the bubble forefront was divided into two

regions. The microlayer thickness increased linearly with increasing velocity on the low velocity

region, and constant other regions. The initial microlayer thickness decreased with lower channel gap

size, and increased with higher heat flux. It was also verified that heat transfer to the bubble was

enhanced by microlayer evaporation.

Utaka et al. [6] experimentally studied that structure of the microlayer that forms between a growing

isolated bubble and the heated wall for nucleate pool boiling. Using a measurement system that

employs laser extinction method, the microlayer thickness for water and ethanol were measured at
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atmospheric pressure. Their result show that the initial microlayer thickness increased linearly with

increasing distance from the bubble initiation site. It however decreased with time due to evaporation

until the film thickness became zero and a dry region appeared. The reported initial microlayer

thickness was approx. 0 − 9 μm for water and twice as thick for ethanol. The heat flow also had little

effect on the initial microlayer thickness for both fluids.

Gao et al. [2] applied a laser interferometric method to study the dynamic characteristics of the

microlayer beneath an ethanol vapor bubble during nucleation. Different correlation constants were

determined to predict the time variation of dry spot radius and microlayer thickness before a dry spot

appears. The authors also reported that microlayer volume increased with time before the dry spot

appeared, but decreased afterwards due to evaporation of the microlayer.

Cooper and Lloyd [7] applied a simplified hydrodynamic theory to predict the thickness of a microlayer

in term of bubble growth time. A ±15% agreement with experimental data was obtained when their

model was applied to the bubble growth rate.

Van Stralen et al. [1] employed Pohlhausen’s equation to predict the initial thickness of the evaporative

microlayer beneath a hemispherical vapor bubble on a superheated horizontal wall. The Pohlhausen’s

solution is based on a simplified Navier-Stokes equation without pressure gradient in combination with

continuity and heat conduction. The model combined the effects of relaxation microlayer around the

bubble dome and evaporation microlayer.

Zhao et al. [8] proposed a theoretical dynamic microlayer model to predict the heat flux in a fully

developed nucleate boiling region on horizontal surfaces that includes critical heat flux (CHF). By

assuming that heat transfer is mainly due to the evaporation of the microlayer, the microlayer thickness,

dryout area, and heat flux were modeled as a function of superheat.

Dhir and colleagues ([9] & [10]) developed a model and numerically solved the shape of the microlayer

underneath a bubble by applying lubrication theory. The radial variation in microlayer thickness was

governed by capillary pressure, recoil pressure, disjoining pressure, and viscous stresses, while the

evaporative heat flux across the liquid-vapor interface was computed using the modified

Clausius-Clapeyron equation. A fourth-order ODE was derived for the microlayer thickness by

combining the mass, momentum, and energy equations. Christopher and Zhang [11] also modeled the

microlayer thickness by applying this model, neglecting the recoil pressure term and using modified

boundary conditions. They compared the microlayer heat flux with predictions made by solving the 2-D

Navier-Stokes equation in the microlayer under steady state. Their result indicates that the total heat

transfer rates across the microlayer increase with bubble size but the increase was not near as fast as the

increase in the microlayer interfacial surface area.

Previous numerical works have focused on steady state analysis of the microlayer. The dynamic

behavior of microlayer as the bubble slides along the surface is studied in this work. Both the steady

and unsteady state behavior of the bubble microlayer thickness was modeled by combining the mass,

momentum, and energy equations for the micro-region. The effects of wall heat flux and system

pressure on the microlayer thickness was analyzed in addition to the its evolution with time before the

bubble dry spot appears. The model was applied to the cases of high pressure boiling water into steam,

which is particularly relevant to the nuclear industry.
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2. GOVERNING EQUATIONS

To model this micro-region, a control volume analysis around the microlayer thickness, δ, was

performed. Interfacial shear stress at the liquid-vapor interface was assumed to be negligible. The

equation of mass conservation in the microlayer is given below [12].

∂δ

∂t
= vl − q̇

ρlh f g
(1)

2.1 Steady State Solution for Microlayer Thickness

∂δ/∂t = 0 in steady state. In this case, eq. 1 simplifies to:

q̇ = ρlh f gvl (2)

Separate mass conservation, momentum and energy equations are solved for the micro-region. The

liquid velocity normal to the vapor-liquid interface, vl, is obtained from the continuity equation as

shown:
1

r
∂(rul)

∂r
+
∂vl

∂y
= 0 =⇒ vl = −1

r
∂

∂r

∫ δ

0

ruldy (3)

Assuming laminar flow, the momentum equation for the microlayer is defined as:

∂Pl

∂r
= μl
∂2ul

∂y2
(4)

To solve eq. 4, the following boundary conditions were applied.

ul|y=0 = 0,
∂ul

∂y
|y=δ = 0

The solution of the momentum equation is:

ul = − 1

μl

∂Pl

∂r

(
δy − y2

2

)
(5)

Substituting eq. 5 into vl in eq. 3 and then integrating, gives the following.

vl =
1

μl

1

r

(
r
∂Pl

∂r
δ2
∂δ

∂r
+ r
∂2Pl

∂r2

δ3

3
+
∂Pl

∂r
δ3

3

)
(6)

Then, vl in eq. 6 is substituted into eq. 2.

q̇ =
ρlh f g

μl

1

r

(
r
∂Pl

∂r
δ2
∂δ

∂r
+ r
∂2Pl

∂r2

δ3

3
+
∂Pl

∂r
δ3

3

)
(7)

The steady-state energy conservation equation for the thin film is:

q̇ = λl
(Tw − Tint)

δ
=⇒ Tint = Tw − q̇δ

λl
(8)
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The evaporative heat flux was applied using the modified Clausius Clapeyron equation as [12]:

q̇ = hev

[
Tint − Tg +

(Pl − Pg)Tg

ρlh f g

]
(9)

Tw is the wall temperature while Tint is the temperature at the bubble-microlayer interface. hev is

defined below where Rg is the gas constant of water vapor.

hev =

(
2

πRgTg

)1/2 ρgh2
f g

Tg
; Tg = Tsat(Pg) (10)

The pressures in the vapor and liquid phases satisfy the following relation:

Pl = Pg − σκ − A
δ3
+

q̇2

ρgh f g
2

(11)

where the dispersion or Hamaker constant, A is 10−20J [12]. The 2nd term on the right hand side in

eq. 11 represents the capillary pressure, the 3rd term is the disjoining pressure, while the 4th term

accounts for the recoil pressure. κ is the interface curvature with surface tension σ. Substituting Pl in

eq. 11 into eq. 9 gives:

q̇ = hev

⎡⎢⎢⎢⎢⎣Tint − Tg +
Tg

ρlh f g

⎛⎜⎜⎜⎜⎝−σκ − A
δ3
+

q̇2

ρgh f g
2

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ (12)

Tint in eq. 8 is substituted into eq. 12, which is then equated with q̇ in eq. 7. This results in the following:

∂2Pl

∂r2

δ3

3
+
∂Pl

∂r

(
δ2
∂δ

∂r
+
δ3

3r

)
+
μlhevTgσ

ρl
2h f g

2
κ =
μlhev

ρlh f g

⎡⎢⎢⎢⎢⎣Tw − Tg − q̇δ
λl
+

Tg

ρlh f g

⎛⎜⎜⎜⎜⎝− A
δ3
+

q̇2

ρgh f g
2

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ (13)

The Pl terms in eq. 11 can be expanded as:

∂Pl

∂r
= −σ∂κ

∂r
+

3A
δ4
∂δ

∂r
(14)

∂2Pl

∂r2
= −σ∂

2κ

∂r2
+

3A
δ4
∂2δ

∂r2
− 12A
δ5

(
∂δ

∂r

)2

(15)

Eqs. 14 & 15 are then substituted into eq. 13. Denoting ′ as ∂/∂r, the resulting rearranged equation is:

κ′′ +
(
3δ′

δ
+

1

r

)
κ′ − 3μlhevTg

ρl
2h f g

2δ3
κ =

9A
σ

[
δ′′

δ4
− 4(δ′)2

δ5
+
δ′

δ4

(
δ′

δ
+

1

3r

)]

− 3μlhev

ρlh f gσδ3

⎡⎢⎢⎢⎢⎣Tw − Tg − q̇δ
λl
+

Tg

ρlh f g

⎛⎜⎜⎜⎜⎝− A
δ3
+

q̇2

ρgh f g
2

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦

(16)

The interface curvature, κ is defined as follows [12].

κ =
1

r
∂

∂r

⎡⎢⎢⎢⎢⎢⎣ rδ′√
1 + (δ′)2

⎤⎥⎥⎥⎥⎥⎦ (17)
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Eq. 17 can be further simplified as shown.

κ =
(
1 + (δ′)2

)−1/2
[
δ′′ +

δ′

r

]
− (δ′)2δ′′

(
1 + (δ′)2

)−3/2
(18)

The 1st and 2nd order differentials of κ are obtained as:

κ′ =
(
1 + (δ′)2

)−1/2
[
δ′′′ +

δ′′

r
+ δ′ ln r

]
−

(
1 + (δ′)2

)−3/2
[
3δ′(δ′′)2 + (δ′)2δ′′′ + (δ′)2 δ

′′

r

]

+
(
1 + (δ′)2

)−5/2 · 3(δ′)3(δ′′)2

(19)

κ′′ =
(
1 + (δ′)2

)−1/2
[
δ′′′′ +

δ′′′

r
+ 2δ′′ ln r + δ′r(ln r − 1)

]

−
(
1 + (δ′)2

)−3/2
[
3(δ′′)3 + 9δ′δ′′δ′′′ + (δ′)2δ′′′′ + 3δ′

(δ′′)2

r
+ (δ′)2 δ

′′′

r
+ 2(δ′)2δ′′ ln r

]

+
(
1 + (δ′)2

)−5/2
[
18(δ′)2(δ′′)3 + 9(δ′)3δ′′δ′′′ + 3(δ′)3 (δ′′)2

r

]
−

(
1 + (δ′)2

)−7/2 · 15(δ′)4(δ′′)3

(20)

The 4th-order nonlinear ODE for microlayer thickness at steady state is then obtained by substituting κ,

κ′, and κ′′ from eqs. (18 − 20) into eq. 16 as given below.

δ′′′′ =
[
3(δ′′)3 + 9δ′δ′′δ′′′ + 3δ′

(δ′′)2

r
+ (δ′)2 δ

′′′

r
+ 2(δ′)2δ′′ ln r

]

−
(
1 + (δ′)2

) [
δ′′′

(
3δ′

δ
+

2

r

)
+ δ′′

(
2 ln r +

3δ′

δr
+

1

r2

)
+ δ′r(ln r − 1) + δ′ ln r

(
3δ′

δ
+

1

r

)]

+

(
3δ′

δ
+

1

r

) [
3δ′(δ′′)2 + (δ′)2δ′′′ + (δ′)2 δ

′′

r

]
+

[(
1 + (δ′)2

)−2 · 15(δ′)4(δ′′)3
]

−
(
1 + (δ′)2

)−1
[
18(δ′)2(δ′′)3 + 9(δ′)3δ′′δ′′′ + 3(δ′)3(δ′′)2

(
3δ′

δ
+

2

r

)]

+
3μlhevTg

ρl
2h f g

2δ3r

[(
1 + (δ′)2

)
(rδ′′ + δ′) − r(δ′)2δ′′

]

+
9A

(
1 + (δ′)2

)3/2

σδ4

[
δ′′ − 4(δ′)2

δ
+ δ′

(
δ′

δ
+

1

3r

)]

−
3μlhev

(
1 + (δ′)2

)3/2

ρlh f gσδ3

⎡⎢⎢⎢⎢⎣Tw − Tg − q̇δ
λl
+

Tg

ρlh f g

⎛⎜⎜⎜⎜⎝− A
δ3
+

q̇2

ρgh f g
2

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦

(21)

2.2 Transient Solution for Microlayer Thickness

The transient behavior of microlayer thickness is then studied as a bubble grows and slides along the

wall. Here, the behavior of the microlayer before the dry spot appears is analyzed. The conservation of

mass equation in eq. 1 can be re-written as:

q̇ = ρlh f g

(
vl − ∂δ
∂t

)
(22)
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The unsteady momentum equation is given as:

∂ul

∂t
= − 1

ρl

∂Pl

∂r
+
μl

ρl

∂2ul

∂y2
(23)

To solve eq. 23, the following initial and boundary conditions were applied.

ur |y=0 = 0,
∂ur

∂y
|y=δ = 0, ur(t = 0) = 0

The solution of the unsteady momentum equation is obtained as:

ul(y, t) =
∞∑

n=0

2

μlδ

∂Pl

∂r

(
δ2

2αn
+

1

αn
3

)
sin (αny) exp

(
−μlαn

2t
ρl

)
− 1

μl

∂Pl

∂r

(
δy − y2

2

)
(24)

where αn is defined as:

αn =
(2n + 1)π

2δ
for n = 0, 1, 2, 3, . . . (25)

The unsteady energy equation at the microlayer is shown below.

ρlcpl

λl

∂Tl

∂t
=
∂2Tl

∂y2
(26)

The following initial and boundary conditions were applied to the energy equation.

∂Tl

∂y
|y=0 = − q̇

λl
,
∂Tl

∂y
|y=δ = 0, Tl(t = 0) = Tw

The solution for the unsteady energy equation gives:

Tl(y, t) =
∞∑

m=0

q̇
λlβm

2

[
(−1)m − 1

]
cos(βmy) exp

(
−λlβm

2t
ρlcpl

)
− q̇y
λl
+ Tw (27)

where βm is given below.

βm =
mπ
δ

for m = 1, 3, 5, . . . while Tl(y, t) = 0 elsewhere (28)

The rate of convergence of the transient terms in eqs. 24 & 27 is tested in Fig. 2. The plots indicate that

each solution converges fast and can be truncated after the 2nd term (n = 1 & m = 3). Thus, the solution

for the velocity and temperature profile is approximated by considering the 1st two terms in the series

for the transient terms.

Using n = 0 & n = 1 in eq. 24, the velocity at the microlayer is:

ul(y, t) = − 1

μl

∂Pl

∂r

(
δy − y2

2

)

+
∂Pl

∂r
2δ2

μlπ

[(
1 +

8

π2

)
sin

(
πy
2δ

)
exp

(
− μlπ

2t
4ρlδ2

)
+

(
1

3
+

8

27π2

)
sin

(
3πy
2δ

)
exp

(
−9μlπ

2t
4ρlδ2

)] (29)
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(a) velocity term (b) temperature term

Figure 2: Plot testing the rate of convergence for the series in the transient terms

Similarly, the microlayer temperature is obtained when m = 1 & m = 3 are applied in eq. 27.

Tl(y, t) = −2q̇δ2

λlπ2

[
cos

(
πy
δ

)
exp

(
− λlπ

2t
ρlcplδ2

)
+

1

9
cos

(
3πy
δ

)
exp

(
− 9λlπ

2t
ρlcplδ2

)]
− q̇y
λl
+ Tw (30)

Substituting eq. 29 into eq. 3 results in the liquid velocity normal to the vapor-liquid interface, vl as

shown.

vl = −2tδ′

ρl

∂Pl

∂r

[(
1 +

8

π2

)
exp

(−μlπ
2t

4ρlδ2

)
+ 3

(
1

3
+

8

27π2

)
exp

(−9μlπ
2t

4ρlδ2

)]

− 1

μl

[
∂2Pl

∂r2
δ3 +

∂Pl

∂r

(
3δ2δ′ +

δ3

r

)]

×
[

4

π2

(
1 +

8

π2

)
exp

(−μlπ
2t

4ρlδ2

)
+

4

3π2

(
1

3
+

8

27π2

)
exp

(−9μlπ
2t

4ρlδ2

)
− 1

3

]
(31)

vl is then substituted into eq. 22 to obtain the heat transfered at the microlayer.

q̇ = −2tδ′h f g
∂Pl

∂r

[(
1 +

8

π2

)
exp

(−μlπ
2t

4ρlδ2

)
+ 3

(
1

3
+

8

27π2

)
exp

(−9μlπ
2t

4ρlδ2

)]

−ρlh f g
∂δ

∂t
− ρlh f g

μl

[
∂2Pl

∂r2
δ3 +

∂Pl

∂r

(
3δ2δ′ +

δ3

r

)]

×
[

4

π2

(
1 +

8

π2

)
exp

(−μlπ
2t

4ρlδ2

)
+

4

3π2

(
1

3
+

8

27π2

)
exp

(−9μlπ
2t

4ρlδ2

)
− 1

3

]
(32)

The evaporative heat flux can also be obtained from the modified Clausius Clapeyron equation in eq. 12.

However, Tl(y, t) from eq. 30 becomes Tl(δ, t) as y→ δ, and this replaces Tint in eq. 12 to account for

the unsteady state.

q̇ = hev

⎡⎢⎢⎢⎢⎣Tw − Tg − q̇δ
λl
+

Tg

ρlh f g

⎛⎜⎜⎜⎜⎝−σκ − A
δ3
+

q̇2

ρgh f g
2

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦

+
2q̇δ2hev

λlπ2

[
exp

(
− λlπ

2t
ρlcplδ2

)
+

1

9
exp

(
− 9λlπ

2t
ρlcplδ2

)] (33)
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q̇ in eqs. 32 & 33 are equated. Then ∂Pl/∂r and ∂2Pl/∂r2 from eqs. 14 & 15 are substituted. This results

in a nonlinear PDE with 4th-order microlayer thickness term and a 1st-order transient term.

∂δ

∂t
= − 2q̇δ2hev

λlπ2ρlh f g

[
exp

(
− λlπ

2t
ρlcplδ2

)
+

1

9
exp

(
− 9λlπ

2t
ρlcplδ2

)]

− hev

ρlh f g

⎡⎢⎢⎢⎢⎣Tw − Tg − q̇δ
λl
+

Tg

ρlh f g

⎛⎜⎜⎜⎜⎝−σκ − A
δ3
+

q̇2

ρgh f g
2

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦

−2tδ′

ρl

(
−σκ′ + 3Aδ′

δ4

) [(
1 +

8

π2

)
exp

(−μlπ
2t

4ρlδ2

)
+ 3

(
1

3
+

8

27π2

)
exp

(−9μlπ
2t

4ρlδ2

)]

− 1

μl

[
δ3

(
−σκ′′ + 3Aδ′′

δ4
− 12A(δ′)2

δ5

)
+

(
−σκ′ + 3Aδ′

δ4

) (
3δ2δ′ +

δ3

r

)]

×
[

4

π2

(
1 +

8

π2

)
exp

(−μlπ
2t

4ρlδ2

)
+

4

3π2

(
1

3
+

8

27π2

)
exp

(−9μlπ
2t

4ρlδ2

)
− 1

3

]

(34)

where κ(δ′, δ′′), κ′(δ′, δ′′, δ′′′), and κ′′(δ′, δ′′, δ′′′, δ′′′′) are defined earlier in eqs. 18 − 20.

3. NUMERICAL PROCEDURE

The numerical analysis of the bubble microlayer was performed in MATLAB. Behavior of the

microlayer thickness was studied at different conditions of system pressures (1 − 21 MPa) and wall heat

flux (0.05 − 2 MW/m2). This range covers the nuclear cooling conditions experienced in BWR and

PWR. Steam and water were applied as the working fluids. The study was performed using the

thermodynamic properties of steam and water [13].

The steady state solution for the 4th-order ODE (eq. 21) was computed using Runge Kutta 4th-order

method. To implement this, the 4th-order ODE was decomposed into a system of four 1st-order ODEs.

The following boundary conditions were applied where δ0 is the initial microlayer thickness [12].

δ0 = 10 μm was applied to maintain a stable solution and avoid singularities. The boundary conditions

were obtained by assuming no-slip at the wall and zero gradient at bubble-microlayer interface.

At r = r0, δ = δ0 and δ′ = δ′′′ = 0; At r = r1, δ
′′ = 0

Runge-Kutta method requires all the boundary conditions at the start point, but δ′′(r0) is not known,

thus a shooting method was applied using the known boundary condition, δ′′(r1) = 0. Shooting method

converts a boundary value problem into a solution of initial value problem. A guess value for δ′′(r0) was

initially applied, and the solution was iterated by shooting for δ′′(r1). The solution iteration was taken

to have converged when |δ′′(r1)shooting − δ′′(r1)| ≈ O(10−3).

The same boundary condition was applied to solve the transient state solution (eq. 34) while the steady

state solution was applied as the initial condition. The transient equation with 4th-order ODE and 1st

order transient term was decomposed into five 1st-order ODEs. It was then solved using 4th-order

Runge Kutta method by marching in time using step size of 10−6 for a period of 0.1 μs.

4. NUMERICAL VALIDATION

The numerical analysis of the bubble microlayer was validated with experimental data from Gao et al.

[2] and Koffman & Plesset [14]. Using ethanol as the test fluid at a heat flux of 32.4 kW/m2 and
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atmospheric pressure, the microlayer volume V(t) at time t, before the dry spot appears was computed

as follows [2]:

V(t) =
∫ Rb

rd

2πr · δ(r, t)dr (35)

V(t) was normalized with microlayer volume at the time the dry spot appeared, Vd = 0.001166 mm3 as

shown in Fig. 3. Using eq. 35, the plot depicts a good agreement between the numerical analysis and

experimental data.

Figure 3: Plot comparing numerical result of normalized microlayer volume with experimental data

At t = 0, the microlayer volume is insignificant since the bubble is just nucleated. This result provides

confidence in the numerical method applied. It is thus used to study the microlayer behavior at high

pressure and high heat flux that cover PWR and BWR operating conditions.

5. RESULTS AND DISCUSSION

Numerical analyses of the behavior at the micro-region was performed for both steady and transient

conditions before the bubble dry spot appears. The microlayer thickness, gradient, and interface

curvature was studied at different conditions of system pressure and wall heat flux.

The bubble microlayer thickness increases when the radius of the micro-region was increased as shown

in Fig. 4. The microlayer thickness also increases as system pressure was raised between 1− 21 MPa, as

depicted in Fig. 4(a). This occurs due to the decrease in liquid density as pressure increases. The

microlayer thickness under a bubble also increases as the wall heat flux is increases, as given in

Fig. 4(b). Thus, higher microlayer thickness indicates that more heat is transferred through the

microlayer to the bubble as the wall heat flux is raised.

Behavior of the microlayer transient behavior is given in Fig. 4. It shows that the microlayer thickness

increases with time before the dry spot appears. Similar result was obtained by Gao et al. [2]. However,

the microlayer thickness would decrease with time after the bubble dry spot appears due to evaporation

of the microlayer. The results in heat and mass transfer and subsequent growth of the bubble as the

7964NURETH-16, Chicago, IL, August 30-September 4, 2015 7963NURETH-16, Chicago, IL, August 30-September 4, 2015



(a) Effect of system pressure (b) Effect of wall heat flux

Figure 4: Plot comparing effects of system pressure and wall heat flux on microlayer thickness

microlayer evaporates. Figs. 5(a) & 5(b) also reveals that microlayer thickness increases with system

pressure and heat flux as time changes.

(a) Effect of system pressure (b) Effect of wall heat flux

Figure 5: Plot comparing transient effects of system pressure and wall heat flux on microlayer thickness

at r = 3 × 10−5m, before the dry spot appears

Fig. 6 shows the behavior of the microlayer gradient as the stem radius of the bubble was varied. The

film gradient increases and reaches a peak as the stem radius increases. The peak gradient is attained

faster at higher system pressure and heat flux as shown in Figs. 6(a) & 6(b). The film gradient reveals

the magnitude of heat and mass transfer and the contact region between the bubble and the heated wall.

Variation of the interface curvature, κ with the stem radius at the micro-region is given in Fig. 7. The

interface curvature affects the pressure gradient and plays a dominant role in the direction of flow over

the spreading portion of the contact surface. It also describes the curvature between the bubble and

microlayer film. More curvature effect is observed as the system pressure and heat flux was raised. This

is due to the decrease in surface tension at higher pressure. Also, a higher degree of curvature is

experienced closer to the triple contact point as the stem radius, r → 0 where the bubble comes in direct
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(a) Effect of system pressure (b) Effect of wall heat flux

Figure 6: Plot comparing effects of system pressure and wall heat flux on microlayer gradient

contact with the wall.

(a) Effect of system pressure (b) Effect of wall heat flux

Figure 7: Plot comparing effects of system pressure and wall heat flux on interface curvature

Analysis of the microlayer beneath a growing bubble was performed to improve the prediction of

bubble behavior in subcooled boiling. To couple this micro-region model to a bubble growth model, the

mass transfer due to the microlayer can be included in the source term of the macro-region equations.

6. CONCLUSIONS

The behavior of the microlayer underneath a bubble during growth was numerically investigated. This

was performed at high system pressure and wall heat flux conditions encountered in nuclear reactors.

4th-order equations of the microlayer thickness were derived by combining the mass, momentum, and

energy equations at the micro-region. The analysis was done for both steady and unsteady state

conditions. The 4th-order Runge Kutta method was employed to compute both equations.

The results indicates that the microlayer thickness increases with the stem radius. The microlayer
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thickness also increased with time before the dry spot appears. However, the thickness is expected to

diminish with time after the dry spot appears due to evaporation. The result also indicates that

microlayer thickness increases with system pressure and wall heat flux. More curvature effect between

the bubble and microlayer film was also observed as the system pressure and heat flux increased.
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