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ABSTRACT 
 
The linear stability of liquid film flowing upward the inner surface of vertical cylinder under the action of 
the swirling gas core flow is investigated taking exactly the centrifugal force and curvature of the cylinder 
into account. Swirl has been considered by superposing a circular movement on the annular flow. The 
theoretical model of the stability of interface to small perturbation is established by analyzing the normal 
force balance condition at the wavy interface. The characteristic equation is solved and the stability 
criterion is obtained. The stability characteristics of neutral, growing and damped modes are presented 
showing the influences of swirl intensity, relative motion of gas-liquid flow, and the surface tension force. 
The modeling results indicate that the swirling of the gas phase stabilizes the film flow while the 
curvature of the cylinder destabilizes it. For strong swirling annular flow, it is found that there is a small 
influence of surface tension on the stability of interface because the stabilizing centrifugal force is 
dominant on this condition. The neutral wavelength is found to be very sensitive to the values of swirl 
intensity and cylinder radius when gas-liquid relative movement is small. However, when gas flow rate is 
large enough, there is no significant difference in its value. 
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1. INTRODUCTION 
 
The swirling annular two-phase flow is encountered in a variety of industry applications, such as 

swirl separators for gas-liquid separation, vortex tools for liquid drainage in wet-gas wells and heat 
exchangers for flow-boiling heat transfer [1-6]. This flow is characterized by the presence of a thin liquid 
film adjacent to the wall and a continuous rotating gas core in the centre. With the strong shear action of 
gas stream, the interface between the phases is not smooth but covered with a complex pattern of waves. 
An understanding of the interfacial stability is considerable practical importance for the study of mass, 
momentum and heat transfer between the phases, since the unstable interface directly leads to droplet 
entrainment. The entrained droplets finally exert in many important parameters of both flow and heat 
transfer processes, resulting in reduced separation efficiency in separators and deteriorated heat transfer in 
heat exchangers. To analyze and simulate swirling annular two-phase flows, it is highly desirable to 
obtain a general model based upon physical modeling which can provide a basis for the understanding of 
the interfacial phenomenon and lay a foundation for the further study of droplet entrainment. 

In the annular/stratified regime of gas-liquid flows, the combination of normal stresses exerted by gas 
and liquid phases and surface tension stress makes the interface wavy. Fig. 1 shows the streamlines over a 
wavy interface and the normal forces acting on the interface [7]. If the gas velocity flowing along the 
interface is large enough, an imbalance between the pressure force acting on the wave crest and surface 
tension can occur. As suggested by [8, 9], this force imbalance, known as a K-H instability, is the primary 
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mechanism by which interfacial wave growth and droplet entrainment occur. [10] concluded that large 
growth rates can occur when the wavelength is in the K-H instability range. For the entrained droplet, the 
assumption of [10] also proposed that the droplet size is directly proportional to the wavelength that 
produced it. [11] point out that the wavelength making the greatest contribution to the rate of droplet 
entrainment scales as the film height in thin liquid film, and the critical wavelength is the most key 
parameter for entrainment prediction, since the volume of liquid detaching from the surface is directly 
proportional to this wavelength. [12] suggested that the K-H instability would cause any wavy 
disturbances on the interface of stratified flow to grow in amplitude and such wave would break to form 
droplets even with small shear velocities when the liquid flow is laminar. In the stratified flow, [13] 
developed a criterion for the wave amplitude required to destabilize the wave at a certain wavelength. 
This model was then extended to predict the onset of entrainment and the transition of flow patterns. 
More recently, [14, 15] conducted a stability analysis to calculate the wavelength and velocity of the 
unstable waves in gas-liquid annular flow. The critical interfacial conditions that lead to droplet 
entrainment were then obtained. From the discussion above, it is clear that the K-H instability mechanism 
is very important in wave-propagation phenomenon and the interfacial waves play a crucial role in the 
transport behavior of two-phase flows. 

 

 
Figure 1.  Stresses and streamlines in stratified/annular two-phase flow with a wavy interface. 
 
Although the liquid film developed on the cylinders have received a reasonable amount of attention in 

the literatures, most of the studies are performed mainly on stratified/annular flows without rotation, the 
exploration on the stability problem of liquid film in swirling flow conditions is limited and the existing 
researches are mostly focused on the stability of a liquid layer flowing inside a rotating cylinder [16-21]. 
For the two-phase swirling flows, [22] proposed a simple model to study the effect of the swirl intensity 
and gas/liquid dynamic pressure ratio on the stability of a swiled liquid film entrained by a fast gas 
stream. [23] presented a linear model to describe the instability behavior of annular, swirling, inviscid 
liquid sheet subject to inner and outer gas flows of differing velocities. However, the general stability 
criteria were not able to obtain in their models due to the complicated characteristic equations. 

In this paper, the interfacial stability of liquid film in swirling annular flow is investigated based on 
the two-fluid flow model. The three-dimensional gas flow in a stationary cylinder is firstly decomposed 
into two normal modes, the annular flow inside a cylinder superposes a circular movement in a plane 
polar. In both cases, gas and liquid phases are assumed to be inviscid and separated by an interface on 
which waves move with a certain velocity. By considering the action of two phases separately, the normal 
stress exerted by each phase on the interface is evaluated. Specially, the centrifugal force induced by swirl 
is treated as an additional normal stress in this analysis. The theoretical model of the stability of interface 
to small perturbation is then established by analyzing the normal force balance condition at the interface. 
The characteristic equation is solved and the stability criterion is obtained. The stability characteristics of 
neutral, growing and damped modes are presented showing the influences of swirl intensity, relative 
motion of gas-liquid flow, and the surface tension force. The results will help us gain a qualitative 

gu
lu
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understanding of the disturbance spectrum of the film flow and provide a basis for the further study of 
droplet entrainment in the swirling annular two-phase flow. 

 
2. THE MATHEMATICAL MODEL 
 

 
Figure 2.  Geometric configuration of the Swirling annular two-phase flow. 

 
The swirling annular flow insider a cylinder is depicted in Fig. 2. We make the following preliminary 

assumptions regarding the basic two-phase flow. 1) The gas and liquid flow are immiscible and there is 
no mass transfer across the interface; 2) the flow is steady in time, fully developed in the axial direction 
and is axially symmetric. Cylindrical coordinates (r, θ, z) and plane polar coordinates (r, θ) moving with 
waves are used for annular flow and circular movement, where r, θ, z denote the radial, azimuthal and 
axial directions, respectively. The cylinder radius is Ro and the radial position of the interface is ri. The 
approximate analytical method presented by [7] is adopted as a basis for the present study. 
 
2.1. Interfacial waves 

 
According to the K-H instability, the study of the stability of an interface to small perturbation ŷ  is 

assumed that the slope of the interface is everywhere small [7]. The shape of the wavy interface is 
approximated by a cosine wave as 

 � �ˆ cosy y k s ct� �   (1) 
where y, ŷ , s and k are the distance from the wall, disturbance amplitude, streamwise direction and 
wavenumber (k=2π/λ), respectively. If the wave velocity c  is complex (c=cR+icI), Eq. (1) becomes 

 � � � �ˆ cos expR Iy y k s c t kc t� �   (2) 
The physical significance of cR is the propagation velocity of the disturbance, while cI represents the 

growth rate. Eq. (2) shows that when cI >0, the waves amplitude increases exponentially with time and the 
flow is untable; when cI <0, the amplitude decreases exponentially with time and the flow is stable; when 
cI =0, the amplitude remains constant, which is defined as the neutral stability condition. 
 
2.2. Gas core analysis 
 
2.1.1. Annular flow 

In cylindrical coordinates, the equations of continuity and motion for gas phase in axisymmetric 
annular flow can be expressed as  
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  (3) 
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where p is the pressure, respectively. The effect of gravity force is not considered since the instability 
analysis is only performed in the radial direction. 

The disturbance to the interface is accompanied by velocity and pressure fluctuations in the base 
flow, by introducing the stream function � , the respective velocity components can be expressed as 

 ,z ru r r u r z� ��� � � �� �   (4) 
The stream function and pressure are expressed in terms of real and imaginary components 

representing a steady solution and a perturbation induced at the wave interface as 

 ˆ ˆ( ) ( ) ( ) ( )ikz ikzr r e p p z p r e� � �� � � �   (5) 
Substituting Eqs. (4) and (5) into Eq (3), eliminating the steady-state solution and neglecting second 

order terms, the equations governing disturbance are obtained. 
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2ˆ ˆ ˆ ˆˆ g

z z
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r r ik r r
� � � �
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� �

� � � � �� �
� �   (6) 
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z g
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Dp D Dk u ikv k
r r r r
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� �

� � � � �� �
� �   (7) 

where D r� � � . 
Eliminating the perturbed pressure p̂  from above two equations and assuming the gas flow is 

inviscid yields the following Orr-Sommerfeld equation. 

 
2 2ˆ ˆ ˆ 0D D r k� � �� � �   (8) 

where 2 2 2D r� � � . 
The general solution for �̂  is given in terms of the first-order modified Bessel functions of the first 

and second kinds, I1 and K1, as 

 � � � �1 1ˆ ArI kr BrK kr� � �   (9) 
where the constants A and B can be determined according to the following boundary conditions.  

The radial velocity component can be calculated from Eq. (4) and Eq. (9) as 

 � � � �1 1ˆˆ ikz
ru r z ik ArI kr BrK kr e�� �� � � � 	 � 
� �   (10) 

Since the gas core in annular flow is assumed to be axisymmetric, the boundary condition of radial 
velocity component along the cylinder axis r=0 is given as 

 ˆ 0ru �   (11) 
Assuming that the flow is uniform and the axial velocity at all points, including interface, is the same. 

Then the boundary condition of radial velocity component at the perturbed interface ri can be 
approximated according to the uniform flow in axial direction as 

 � �ˆr z z iu u c r z� � � �     (12) 
where 

 � � ˆ ikz
i or R e� �� � �

  (13) 
Then 

 � �ˆˆ ikz
r z zu ik u c e�� �   (14) 

where � , �̂ , zu  and zc  are the average and perturbed film thickness, average axial velocity and axial 
wave velocity, respectively. 

Taking the above boundary conditions into account, the constants 1
ˆ( ) ( )z z iA u c I kr�� � �  and 0B � , 

then the final expression for the perturbation of the stream function is obtained 
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  (15) 

where i or R �� �  is the mean radial position of the interface. 
Based on Eq. (15), the amplitude of the perturbed pressure can be derived from the integration of Eq. 

(7), which is related to the average axial velocity zu  as 

 
� �2 0

1

( ) 1ˆˆ
( )g g z z

i

I krp k u c
I kr

� � �
� �

  (16) 
where I0 is the zero-order modified Bessel function of first kind.  

The normal stress perturbation � �
1

ˆ
igN  exerted by gas phase on the interface ir r�  equals to the 

magnitude of the perturbed pressure ˆ gp  and acts outward and perpendicular to the interface, can be 
expressed as 
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  (17) 

Fig. 3 shows how the ratio of � � � �0 11i iI kr I kr	 � 
� �  changes with the variable ikr .  
 

 
Figure 3.  Dependence of the value of � � � �	 
� �0 11i iI kr I kr�  variation upon ikr . 

 
Generally, the wavelength in annular flow is in order of 0.1~1 millimeter [24], for very large radius to 

wavelength ratios 3ikr 3 , the value of � �0 1( ) 1 ( )i iI kr I kr�  tend to unity. Then the Eq. (17) reduces to 

 � � � �2

1
ˆˆ

ig g z zN k u c��� � �
  (18) 

 
2.1.1. Circular movement 

 

Figure 4.  Circular movement of gas core in plane polar coordinates. 
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In plane polar coordinates (Fig. 4), the equations of motion and continuity for gas phase in circular 
movement can be expressed as 

 

� �
2

2
2 2

2
2 2

1 1 0

1 2

1 2

r

r r r
r g r

g

r r
r g

g

uru
r r r

u u uu u upu v u
r r r r r r

u u u u u u upu v u
r r r r r r

�

� � �

� � � � �
�

�

� � �

� � � �

��
� �

� �
�� � � 	 
� � � � � � � �
 �� � � �� �

� � �� 	 
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where 
2 2

2
2 2 2

1 1=
r r r r �
� � �
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� � �

. 

By introducing stream function ψ and using a similar analysis procedure as above (the details of 
analysis are shown in Appendix A), the amplitude of the perturbed pressure can be derived. Specially, 
since the gas phase is assumed to be inviscid, the model of a potential vortex flow is adopted for circular 
movement in this case, i.e ug,θ=C/r. Thus, we obtain the perturbed normal stress exerted by the gas core in 
circular movement on the interface ( ir r� ) 
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 �� � � �� �   (20) 

where m  and ,gu �  are the azimuthal wavenumber (nondimensional) and the average azimuthal velocity 
at the interface, respectively. 

Fig. 5(a) and (b) shows how the ratios of � �22 1 4 3m m� �  and � � � �2 21 4 1 1 4 3m m� � � �  

change with the azimuthal wavenumber m. For very large radius to wavelength ratios, the wavenumber m 

is large enough that the values of � �22 1 4 3m m� �  and � � � �2 21 4 1 1 4 3m m� � � �  tend to unity. 

Under this condition, the Eq. (20) can be simplified to 
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(a)                                                                                      (b) 

Figure 5.  Dependence of the values of � �22 1 + 4 3m m �  and � � � �2 21+ 4 +1 1+ 4 3m m �  

variation upon m. 
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Since the liquid film is infinite in the axial direction while it is periodic in the azimuthal direction, for 
the simplest case, we assume ik m r� , then the total perturbed normal force ˆ

igN  exerted by the gas core 
in swirling annular flow acting on the interface can be obtained by applying the principle of 
superposition. 
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 �� �   (22) 
where 

 
2 2 2 2 2 2

z zu u u c c c� �� � � �   (23) 
In order to investigate the action of rotation on the interfacial stability, the swirl intensity is quantified 

in terms of number Sw, which is defined as the ratio of azimuthal velocity and mean velocity. 
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  (24) 
Thus, if swirl intensity increases, number Sw increases, and vice versa.  
Therefore, the overall normal stress (including both steady and disturbed ones) exerted by gas flow on 

the interface can be expressed as 
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 �� �   (25) 

where igN  is the steady normal stress exerted by gas phase in swirling annular flow. 
 
2.3. Liquid film analysis 

 

 
Figure 6.  Liquid film flow in Cartesian coordinates. 

 
A similar procedure can be used to drive an expression for the normal stress at the interface due to the 

liquid film in swirling annular flow. The film is considered to be sufficiently thin that the Cartesian 
coordinates can be used for this derivation (Fig. 6). Taking into account the effect of circular movement, 
the centrifugal force induced by the swirl is added as a source term in the momentum equation. 

Then the equations of continuity and motion for two-dimensional Cartesian coordinates (y, s) are 
given as: 
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where variable oy R r� �  and s denotes the streamwise direction.  
The azimuthal velocity can be calculated as 

 s wu u S� �   (27) 
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The equations for stream function and pressure in Cartesian coordinates are described as 

 ˆ ˆ( ) ( ) ( ) ( )iks iksy y e p p s p y e� � �� � � �   (28) 
The velocity components can be expressed as yu s�� �� �  and su y�� � � . 
Using a similar analysis procedure as the gas phase, the amplitude of the pressure perturbation can be 

expressed in terms of the film thickness (� , �̂ ), liquid density l� , average film velocity lu , swirl 
intensity Sw, wavenumber k  and wave velocity c  as 
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The amplitude of the perturbed normal stress ˆ
ilN  exerted on the interface y ��  as a result of the 

motion of liquid film is then given as 
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Fig. 7(a) and (b) shows how the ratio of � � � � � �1 2 1 2
1 21 1n n n ne n e n e e� � � � �	 
� � � �� �  changes with 

the k� . In this figure, two typical values of the cylinder radius Ro=10mm and Ro=20mm are selected for 
comparison and verification. 
 

   
(a) Ro=10mm                                                                (b) Ro=20mm 

Figure 7.  Dependence of the value of � � � � � �	 
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The liquid film in swirling annular flow is very thin, which is in order of 0.1~1mm according to the 

experimental data of [1-4]. So for long waves k�  will be very small and when < 1k� , the value of 
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� � � � � �1 2 1 2
1 21 1n n n ne n e n e e� � � � �	 
� � � �� �  remains approximately 0.5, then the Eq. (31) can be 

simplified to 
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Therefore, the normal stress exerted by the liquid film on the interface is 

 
� � � �2 22

2
ˆˆ

ˆ =
2

l w liks iksl
il il il il l

i

S ukN N N e N u c e
r

� �� ��	 

� � � � �
 �


 �� �   (33) 
where ilN  is the steady normal stress exerted by liquid film in swirling annular flow. 
 
2.4. Interfacial stability calculation (Dispersion relation) 

 
The interfacial stability conditions for inviscid swirling annular flow can be found by balancing the 

normal stresses exerted by the gas and liquid phase (Nig, Nil), and the stabilizing force of surface tension 
stress σχ at the wavy interface. At the crest of the wave shown in Fig. 1, the stability equation is given by 

 il igN N ��� �   (34) 
where χ and σ are the interface curvature and surface tension, respectively.  

Since the balance of forces is done at the peak of the wave, the curvature is calculated at that point 
where it actually has its maximum value. This maximum curvature is calculated by Eq. (1) at s=0 

 
2 ˆ iksk e� ��   (35) 

Substituting Eqs. (25), (33) and (35) into (34) yields the following dispersion relation of the 
interfacial wave 
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The above equation indicates that the extra terms deriving from circular movement of each phase 
have been introduced into the dispersive equation of the interfacial waves to account for the amplitude of 
the disturbance at the wavy interface. By solving this equation, the real and imaginary parts of the wave 
velocity can be expressed as 
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Following a temporal analysis, a necessary condition for the stability is cI<0. Hence, the stability 
criterion is obtained, that is 
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The above inequality will degenerate into the stability criterion for annular two-phase flow derived by 
[7] if the swirl intensity Sw which is related to the action of rotation equals zero. 

 
3. Linear stability analysis 

 
In order to study the influence of swirl intensity and the radius of cylinder on the stability of the film 

flow, geometry parameters and flow parameters of each phase selected for this study include (1) cylinder 
radius Ro: 10, 15 and 20mm; (2) swirl intensity Sw: 0, 0.5, 0.71, 0.87 (corresponding to the swirl angle θ: 
0°, 30°, 45°, 60°); (3) mean gas velocity gu : 15~30m/s; (4) mean liquid velocity lu : 1.72m/s. 

 
3.1. Amplitude growth rate 

 
The value of cI is the amplitude growth rate of the disturbance and is illustrated in Fig. 8 as a function 

of the wavelength λ, for a given flow condition and at various swirl intensity Sw and cylinder radius Ro. 
The average thickness of liquid film is 0.923mm in all cases. As the above discussion, if the growth rate 
remains less than zero for all wavelengths, any disturbed interfacial wave will decay over time, which 
means that the interface is always stable. However, if positive values for the growth rate exist, the flow 
will become unstable. As shown in Fig. 8(a), it is observed that at the same other conditions, the growth 
rate for disturbance in annular flow (Sw=0) is higher in comparison with those obtained for swirling flows 
(Sw>0). The addition of swirl both causes the disturbance to spiral as it travels downstream and the 
induced centrifugal force decays the amplitude of the disturbance. Namely, the wave produced in swirling 
condition grows slower than that in annular regime. Similarly, for a certain swirling annular flow, a 
smaller cylinder radius Ro results in a more stable flow as shown in Fig. 8(b). 

 

 
(a)                                                                          (b) 

Figure 8.  Growth rate of disturbed waves at a film thickness of 0.923mm for various: (a)Sw values 
at ug=17.0m/s, ul=1.72m/s, Ro=15mm; (b)Ro values at ug=17.0m/s, ul=1.72m/s, Sw =0.71. 

 
According to Eq. (35), the effect of the surface tension (σχ) on the interfacial stability depends on the 

wavelength λ: short wavelengths tend to stabilize the flow, whereas long wavelengths tend to destabilize 
it. The present analysis indicates that the existence of a critical wavelength λc for each curve within the 
small wavelength regime (λ<7mm), for which there is a balance between surface tension force, centrifugal 
force and gas-liquid relative flow. On this neutral stability condition, the amplitude of disturbance 
remains constant and does not change with time. In addition, Fig. 8(a) and (b) also indicates that for 
stronger swirl intensity and smaller cylinder radius, there is a small influence of surface tension on the 
stability region (cI<0), because the stabilizing centrifugal force is dominant on this condition. However, 
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for lower swirl intensity and larger cylinder radius, the flow tends to become conditional stable, showing 
the importance of the surface tension acquires in this case. 

 

         
(a)                                                                                (b) 

Figure 9.  Growth rate of disturbed waves at a film thickness of 0.923mm for various (a)Sw values at 
ul=1.72m/s, Ro=15mm, λ=10mm; (b) Ro values at ul=1.72m/s, Sw=0.71, λ=10mm. 

 
The amplitude growth rate cI is illustrated in Fig. 9(a) and (b) as a function of gas mean velocity, for a 

constant liquid flow and at various swirl intensity Sw and cylinder radius Ro. The average thickness of 
liquid film is 0.923mm and wavelength is 10mm in all cases. Similar to above analysis, for a given flow 
condition, the growth rate cI decreases as the value of Sw increases and Ro decreases, indicating that a 
larger swirl intensity results in a more stable flow, and the increased cylinder radius makes the film more 
unstable. From the figure, it is also noted that within a small gas flow rate region, the relative movement 
between the two phases is so small that for a strong swirl intensity or small cylinder radius in swirling 
flows, the combination of centrifugal force and surface tension force can prevail over the destabilizing 
relative motion of the two phases. On this condition, amplitudes of disturbance wave will decay and flow 
becomes stable.  
 
3.2. Neutral stability curves 

 
By setting cI=0, the neutral stability curve can be easily determined from Eqs. (38). The λc-ug plane is 

divided into two different characteristic regions by the neutral stability curve. One is the linearly stable 
region (cI<0) where small disturbances decay with time and the other is the linearly unstable region (cI>0) 
where the small disturbance grows as time increases. 

The effect of swirl intensity Sw and cylinder radius Ro on the neutral curves for various gas flow 
conditions are shown in Fig. 10. As shown in Fig. 10(a), with the increase of swirl intensity, the critical 
value of wavelength λc increases and so the area of linearly stable region enlarges. Hence, it is concluded 
that the swirl motion implicates a stabilizing effect on the growth of disturbance. This swirl action 
induces additional centrifugal force acting as a “rigidity” to the wavy interface, decreasing the pressure 
gradient in the normal direction and making the interface stable. Fig. 10(b) shows the neutral stability 
curves of a swirling flow (Sw=0.71) with different values of cylinder radius Ro. The results indicate that 
the unstable region grows for an increasing Ro. Therefore, the cylinder radius has a destabilizing effect on 
the stability of the system. For a given flow condition, as cylinder radius increases, the centrifugal force 
acting on the wavy interface decreases. As a consequence of this, amplitudes of disturbance wave will 
grow and system becomes unstable. In addition, it can be found that the wavelength of neutral mode λc is 
very sensitive to the values of Sw and Ro when gas-liquid relative movement is small. However, when gas 
flowrate is large enough, there is not implicit difference in these values. 
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(a)                                                                                (b) 

Figure 10.  Neutral stability curves at a film thickness of 0.923mm for various (a)Sw values at 
ul=1.72m/s, Ro=15mm; (b)Ro values at ul=1.72m/s, Sw=0.71. 

 
4. CONCLUSIONS  

 
A three-dimensional linear temporal instability analysis has been carried out to model the interfacial 

stability of swirling annular flow. The swirling gas flow is deposited into a annular flow superposes a 
circular movement while the swirling liquid film flow is regard as two-dimensional flow. In the case of 
small disturbance, the interfacial stability criterion is obtained. The effects of the relative motion of gas-
liquid flow, swirl intensity and cylinder radius on the interfacial stability are detailed investigated. From 
this study, we can draw the following conclusions: 
(1) For a given flow condition, a cylinder with larger radius induces the flow instability condition while 

the stable region enlarges significantly by the existence of swirling motion; 
(2) For a given flow condition with strong swirl intensity and small cylinder radius, there is a small 

influence of surface tension on the stability region whereas for lower swirl intensity and larger 
cylinder radius, the flow tends to become conditional stable, showing the importance of the surface 
tension acquires in this case; 

(3) Under neutral stability conditions, the value of the critical wavelength is very sensitive to the swirl 
intensity and cylinder radius when gas-liquid relative movement is small. However, when gas flow-
rate is large enough, there is no significant difference in its value. 
 

APPENDIX 
 
The equations of motion and continuity for circular movement of gas core are given in terms of plane 

polar coordinates 
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By introducing the Stokes stream function � , the respective velocity components can be expressed as 

ru r� �� � �  and u r� �� �� � . The equations for stream function and pressure are expressed as 

 
ˆ ˆ( ) ( ) , ( ) ( )im imr r e p p p r e� �� � � �� � � �

  (41) 
where m is the azimuthal wavenumber. 

Substituting Eq. (41) into Eq. (40) and eliminating the steady-state solution, the equations governing 
disturbances are obtained 

 

2

2

ˆ ˆˆ ˆ ˆ ˆ ˆ
g g

um u u Dp pD Du u D
r r r

�� �
� �� � � � �

� �
� � � � � � � �

  (42) 
Eliminating perturbed pressure p̂  from above equations and assuming that viscous effects are 

negligible, the inviscid form of the Orr-Sommerfeld equation in polar coordinates is given as 
  

 

2
2 2

2 2
ˆ ˆ ˆ( ) 0u Dumu c D D u

r r r
� �

� � �� � �
� � � �� � � � � � �� � � �

� �� �   (43) 
Since the gas flow is assumed to be inviscid, the motion of a given fluid element in rotating gas core 

is not influenced by the neighboring element at smaller and larger radii. The moment of momentum in gas 
core is conserved and the model of a potential vortex flow is considered. The azimuthal velocity 
distribution in such a flow can be expressed as 

 
u C r� �

  (44) 
where C is a constant.  

Substituting Eq. (44) to Eq. (43), the value of second term in left hand in Eq. (43) equals zero and this 
equation can be simplified to an Euler equation 

 

2
2

2
ˆ ˆ 0mD

r
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  (45) 
with the general solution 
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r Dr Er�
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  (46) 

The D and E are constants depending on the boundary conditions at the axis and interface. 
The radial velocity component can be calculated as 

 

2 21 4 1 1 4 1
2 2

ˆ ˆ1ˆ
m m

im im
ru ime Dr Er ime

r r
� �� �

�
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� �� � �   (47) 

The boundary condition of radial velocity at the cylinder axis r=0 is given as 

 
ˆ 0ru �

  (48) 
The boundary condition of radial velocity at the perturbed interface ri can be approximated according 

to the potential vortex flow in azimuthal direction as 

 
,ˆ ( ) i

r g
i

ru u c
r� �
�

� �
�   (49) 

where ,g iu C r� �  is the average azimuthal velocity on the interface.  
The radial position of the interface ri in the azimuthal direction θ is 

 
� � ˆ im

i or R e �� �� � �
  (50) 

Then 
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  (51) 

where � , �̂ , ,gu �  and c�  are the average and perturbed film thickness, average azimuthal velocity on the 
interface and azimuthal wave velocity, respectively. 

Taking the above boundary conditions into account leads to the final expression for the perturbation 
of the stream function 
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� �   (52) 
Based on Eq.(52), the amplitude of the perturbed pressure can be derived from the integration of 

Eq.(42), which is related to the azimuthal velocity as 
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NOMENCLATURE 
 
c  wave velocity (complex), m/s Rc  phase velocity of wave, m/s 

Ic   growth rate of wave, m/s k  wavenumber in flow direction, m-1 
m  azimuthal wavenumber ir  radial position of interface, m 
ŷ  disturbance amplitude, m-1 �  surface tension, N/m  
�  interface curvature, m-1 �  film thickness, m 

wS  swirl intensity  iN  normal stress, Pa 

0I  zero-order modified Bessel function of first 
kind 1I  first-order modified Bessel functions of first 

kind 

1K   first-order modified Bessel functions of second 
 kind A-E constants 
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