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ABSTRACT 
 
The influence of CHF experimental uncertainties on predicting the CHF in rod bundles was examined 
with a local parameter CHF prediction model. The AECL-IPPE 1995 CHF lookup table method, in 
conjunction with a subchannel analysis code MATRA, was employed with various correction factors. 
Referring to the verification and validation procedure issued by ASME, the validation uncertainty for a 
selected CHF data from the rod bundle CHF experiment was evaluated by the sensitivity coefficient 
approach and the Monte-Carlo approach. Thirteen uncertainty parameters were selected for the sensitivity 
and uncertainty analyses: five state parameters, two geometry parameters, and six modeling parameters. 
The validation uncertainty with respect to the DNBR (i.e., predicted-to-measured CHF ratio) was 
estimated by accounting for the measurement uncertainty, input uncertainty, and numerical uncertainty. 
Finally, the influence of experimental uncertainties to the correlation limit DNBR was illustrated by 
incorporating the validation uncertainty into the selected CHF database.  
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1. INTRODUCTION 
 
The critical heat flux (CHF) is an important parameter in the design of an advanced water cooled nuclear 
reactor to avoid fuel failure caused by a deterioration of the heat transfer coefficient in the core. The 
design criteria specifies that the nuclear reactor must be operated at a certain percentage below the CHF at 
all times and locations. This is accomplished by comparing the minimum DNBR (Departure from 
Nucleate Boiling Ratio) in the reactor core with a limit DNBR, which was determined by considering the 
uncertainty of the CHF prediction model. According to the CHF design criterion, the CHF should not 
occur at the hottest rod in the core during normal operation and anticipated operational occurrences with 
at least a 95% probability at a 95% confidence level. To incorporate this design criterion into the 
correlation limit DNBR, it is necessary to evaluate the tolerance limit of M/P (Measured CHF divided by 
Predicted CHF) from the sample distribution of M/P, which is drawn from an analysis of the CHF data. 
The sample distribution of M/P represents the uncertainty of the CHF prediction model. The inverse of 
the lower tolerance limit of M/P corresponds to the limit DNBR. 
 
 In the open-latticed fuel assemblies such as in PWR cores, the CHF is usually calculated by the local 
parameter CHF correlation. It requires local thermal hydraulic parameters at the CHF location which are 
usually calculated by a subchannel analysis code. In a conventional approach, the M/P for the CHF data is 
evaluated by comparing the nominal values of the predicted and measured CHFs. That is, the 
experimental uncertainty for the CHF data was not clearly accounted for in the procedure to determine the 
limit DNBR. However, since the local thermal hydraulic parameters are not measured during CHF 
experiments, the measurement uncertainties of the bundle averaged parameters propagate to the 
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uncertainties of the local parameters through a subchannel analysis code. Thus, the uncertainties of local 
parameters as well as the uncertainty of measured CHF should be considered to evaluate the uncertainty 
of the CHF prediction model. 
 
In this study, the influence of experimental uncertainty to the uncertainty of the CHF prediction model 
was investigated. Rod bundle CHF data obtained under an advanced PWR core condition were applied to 
evaluate the uncertainty of a CHF prediction model. The AECL-IPPE 1995 CHF lookup table method [1] 
was selected as the local parameter CHF correlation, with appropriate correction factors developed for rod 
bundles. Referring to the verification and validation (V&V) procedure for a heat transfer model described 
in the ASME V&V-20 [2], the validation uncertainty of the CHF table method was estimated against a 
rod bundle CHF data by employing a subchannel analysis code, MATRA. 
 
2. ASSESSMENT OF CHF LOOKUP TABLE EMTHOD FOR ROD BUNDLES 
 
2.1. CHF Experiments under Advanced PWR Conditions 
 
The CHF experiment has been conducted in a high-pressure water test loop at Stern Laboratories in 
Canada. The test bundle simulates fuel assembly which is applicable to an advanced PWR developed at 
KAERI, called SMART (System-integrated Modular Advanced ReacTor) [3]. As illustrated in Fig. 1, the 
major components of the test loop consists of test section, gas pressurizer, mixers, heat exchangers, 
condenser, main coolant pump, and preheater. The test section includes the pressure housing, flow 
channel, fuel simulators, spacer grids, and instrumentation. Four different test bundles were employed to 
investigate the influence of non-uniform axial power shape and a central unheated rod on the CHF. The 
test bundle consists of twenty-five indirectly heated rods with a 9.5 mm outer diameter. The test section 
and test loop were instrumented to measure the power, flow rate, absolute/differential pressures, and 
coolant temperature during testing. The uncertainties of the heater rods/flow channel dimensions and the 
test conditions were originated from the fabrication tolerance and instrumentation errors. The uncertainty 
of the measured critical heat flux was estimated as 0.68%.  
 
 

 
Figure 1.  Schematic of CHF Test Loop. 
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Adiabatic pressure drop tests were performed at the beginning of each test series to check the 
reproducibility of the data. Single-phase and two-phase pressure drops in the test bundle were measured 
during the CHF experiments. A thermal mixing test was separately performed by measuring the 
subchannel exit temperatures under steady-state conditions. A large gradient of radial power distribution 
was applied for the thermal mixing test bundle: the average power in the hot region is approximately 4.5 
times higher than that in the cold region. A CHF test has been conducted in a pressure range of 25 to 17 
MPa, a mass flux of 500 to 2500 kg/m2s, an inlet temperature of 150 to 325 deg-C, and a critical quality 
of -25% to +74%. The effects of a non-uniform axial power shape and unheated rod were investigated 
during the CHF experiments. 
 
2.2.  Application of a CHF Lookup Table Method to Rod Bundles 
 
The CHF lookup table method provides CHF values for water-cooled tubes at discrete values of pressure, 
mass velocity, and critical quality. Linear interpolation between table values gives the CHF for a specific 
condition, and several correction factors were introduced to extent the CHF table to various shapes of the 
boiling channel. It has been reported that the CHF lookup table method revealed a reasonable accuracy 
for rod bundles with appropriate correction factors [4-6]. In this study, the AECL-IPPE 1995 CHF lookup 
table was selected as the local parameter CHF prediction model. The local thermal hydraulic conditions 
were calculated by the subchannel analysis code, MATRA. The CHF was determined at the predicted 
minimum DNBR location with a heat balance method (HBM) [7]. In addition to the existing correction 
factors for rod bundles (K1, K3, and K4) [1], a complementary correction factor for rod bundles (KR) was 
developed from an extensive assessment of rod bundle CHF data for PWR and advanced PWR 
conditions. The functional form of the correction factors are provided in Table I. Tong’s F-factor [8] was 
applied for axially non-uniform power shapes. Based on the local mass flux, local quality, and pressure 
calculated by the MATRA code, the CHF for uniform axial power shape is calculated by  
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Table I. Correction factors of a CHF Table Method for Rod Bundles 
 

Description Correction factors 

Channel flow area � �0.5
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Rod bundles � �� � � � � �1.062 0.47 exp 1.029 5.14E-5 0.966 1.27E-54.4R r spK GP g� � � � � � �� � � �  

 
 
The accuracy of the CHF table method with modified correction factors was examined for the CHF data 
obtained from four different SMART test bundles. The mean and standard deviation of M/P were 
calculated by 1.011 and 0.090, respectively. The distribution of M/P was compared with the normal 
distribution curve in Fig. 2. As a result of a Kolmogorov-Smirnov normality test, the data were drawn 
from a normally distributed population at the 5% significance level. Thus, according to a traditional 
approach, the limit DNBR of the CHF table method can be evaluated by 
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where ‘(M/P)mean’ is the mean value of M/P, ‘s’ is the sample standard deviation of M/P, and k95/95 is the 
one-sided tolerance limit factor [9], which was determined as 1.772 for 437 data points. As a result, the 
limit DNBR was evaluated as 1.174. 
 
 

 
Figure 2.  Distribution of M/P by a CHF table method 

 
 
3. UNCERTAINTY ANALYSIS OF CHF PREDICTION MODEL 
 
3.1.  Methodology for Uncertainty Analysis 
 
The uncertainty of the CHF prediction model was estimated against selected steady-state CHF data 
according to the standard of the V&V procedure issued by ASME [2]. The final goal of this standard is to 
evaluate the uncertainty range of the model error from the validation comparison error and the validation 
uncertainty. The validation comparison error (E) is defined as the difference between the simulation result 
(P) and measured data (M). From the definition of an error, E can be expressed as a difference between 
the simulation error (�P) and the measure data error (�M). Thus E contains all of the errors relevant to the 
simulation procedure and the experimental results. The simulation error accounts for various errors: a 
model error (�model) due to modeling assumptions and approximations, a numerical error (�num) due to the 
numerical solution method of the equations, and an input error (�input) due to errors in the simulation input 
parameters. Thus, the error of the CHF prediction model, �model, can be expressed as 
 

� �model num input ME� � � �� � � �      (3) 
 
The uncertainty range of the model error can be estimated from E and the validation uncertainty (uval) 
which is defined as an estimate of the standard deviation of the combined errors in the parenthesis of eq. 
(3). If these errors are statistically independent, the validation uncertainty can be estimated by 
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 2 2 2
val num input Mu u u u� � �       (4) 

 
where the standard uncertainties unum, uinput, and uM are the estimates of errors �num, �input, and �M, 
respectively. From eq. (3), the uncertainty range of the model error can be estimated as 
 

 val model valE u E u�� � � �       (5) 
  
In eq. (4), the numerical uncertainty (unum) can be estimated from the code/solution verification while the 
measurement uncertainty (uM) is determined from the instrument error during the experiment. For the 
estimation of input uncertainty (uinput), two approaches were applied for an analysis of the uncertainty 
propagation of input parameters to the simulation results: a sensitivity coefficient (SC) approach and a 
Monte-Carlo (MC) approach. In the SC approach, as shown in Fig. 3, the local sensitivity coefficient is 
calculated under nominal conditions. The input uncertainty is calculated by combining the sensitivity 
coefficients and the coefficient of variations for each input parameter. That is, 
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In this study the simulation results are expressed as DNBR, which represents the ratio of predicted-to-
measured CHF. Then a new validation comparison error was introduced which is expressed by the 
normalized P/M: i.e., / 1P ME �� � , where � � � �/ 0P M P M P M� � . 
 
 

 
Figure 3. Uncertainty analysis by sensitivity coefficient approach 

 
 
In the MC approach, as shown in Fig. 4, the input uncertainty can be estimated by a simple random 
sampling for each input parameter. For a set of random sampled input parameters, the simulation result 
(Pi) is compared with the random sampled experimental data (Mi). After a number of samples, a 
distribution of E can be obtained which included the input measurement uncertainties.  
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Figure 4. Uncertainty analysis by Monte-Carlo approach 

 
 
3.2.  Uncertainty Parameters 
 
A steady-state rod bundle CHF data for a SMART test bundle with non-uniform axial power shape was 
selected for an uncertainty analysis of the CHF prediction model. The uncertainty parameters for the 
evaluation of input uncertainty were selected by considering the uncertainties of experimental parameters 
and the MATRA code models. The estimated values of the standard deviation and probability distribution 
function (pdf) for each parameter are listed in Table II. The probability distribution functions for all 
parameters were assumed as normal except the inlet temperature which has a flat distribution. 
 
The uncertainties of the test condition and test section geometry were determined from the 
instrumentation and fabrication errors for the CHF experiment. The power distribution uncertainty was 
accounted for in the Monte-Carlo approach by re-normalizing the power distribution after a random 
sampling of power at every calculation node. The uncertainty parameters for the MATRA code model 
were selected which may have significant influence on the distribution of local thermal hydraulic 
conditions in the subchannels. The uncertainties of the model parameters were evaluated on the basis of 
relevant experimental data for rod bundles, if available.  
 
The uncertainty of the single-phase bundle friction factor by the McAdams relation was assumed to be 
10%. The optimum value of the grid loss factor was determined from an analysis of the single-phase 
pressure drop data for the whole length of the SMART test bundles, which included pressure losses due to 
the bundle friction and spacer grids. The uncertainty of grid loss factor accompanied with the McAdams 
friction factor model was evaluated as 1.8%. 
 
The two-phase pressure drop was measured over the test bundles during the CHF experiments. A set of 
two-phase models was selected for the evaluation of the two-phase pressure drop data: a Saha-Zuber 
subcooled void model, Chexal-Lellouch bulk void model, and homogeneous two-phase friction multiplier 
model. As a result of the evaluation, it was revealed that the MATRA code with this set of two-phase 
models under-predict the two-phase pressure drop over the test bundles by about 12%. The uncertainty 
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estimated by this set of models was imposed on the uncertainty of two-phase friction multiplier model. 
On the other hand, the uncertainties of other models were assumed by referring to a previous work for 
PSBT benchmark exercises [10]. 
 
Turbulent mixing parameter (�) is an important input variable of the MATRA code, which is defined as a 
ratio of the lateral fluctuating mass flux to the axial mass flux of the fluid in the subchannel. The optimum 
value of � was determined from the analysis of the thermal mixing test data, which provided subchannel 
exit temperatures for a test bundle with a large gradient of radial power distribution. As a result of the 
analysis for 106 test data from a SMART test bundle, the mean value and standard deviation of � were 
evaluated as 0.062 and 0.005, respectively.  
 
The uncertainty distributions evaluated from the relevant experimental data for the SMART test bundles 
are illustrated in Fig. 5: the grid loss factor, two-phase friction multiplier model, and turbulent mixing 
parameter.  
 
 

Table II. Uncertainty parameters 
 

Parameter Nominal 1-σ pdf 
Test conditions: 

Pressure, MPa 
Inlet temperature, oC 
Inlet mass flux, kg/m2s 
Average heat flux, kW/m2 
Power distribution 

 
15.57 
280.2 
1002 
1058 

Non-uniform 

 
0.048 
0.4 
9.5 
7.2 

1.7% 

 
Normal 

Flat 
Normal 
Normal 
Normal 

Geometry:, mm 
Rod diameter 
TS channel width 

 
9.5 

65.61 

 
0.03 
0.03 

 
Normal 
Normal 

Modeling: 
Bundle friction factor 
Grid loss factor 
Turbulent mixing parameter 
Subcooled void model 
Bulk void model 
Two-phase friction multiplier 

 
0.184Re-0.2 

1.0 
0.062 
1.0 
1.0 

0.881 

 
10% 
1.8% 
0.005 
10% 
10% 

10.3% 

 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 

 
 

 
Figure 5. Uncertainty distributions of the MATRA code models 

 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
0

10

20

30

40

50

60

70

 

 

C
ou

nt

P/M

P/M statistic:
  mean = 0.881
  std. dev. = 0.103

Uncertainty of two-phase friction multiplier model

0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

10

20

30

40

50

60
 

C
ou

nt

Optimized Turbulent Mixing Parameter

Uncertainty of turbulent mixing parameter

statistic of ��:
  mean = 0.062
  std. dev. = 0.005

0.90 0.95 1.00 1.05 1.10
0

10

20

30

40

50

 

 

C
ou

nt

P/M

P/M statistic:
  mean = 1.0
  std. dev. = 0.018

Uncertainty of grid loss factor

8184NURETH-16, Chicago, IL, August 30-September 4, 2015 8183NURETH-16, Chicago, IL, August 30-September 4, 2015



3.3.  Sensitivity Coefficient Approach 
 
The sensitivity coefficient (Si) is defined as the ratio between the percent change of DNBR to the percent 
change of input parameter. It is evaluated by changing the parameter in 3  from its nominal value. 
The sensitivity coefficients for uncertainty parameters are compared in Fig. 6. The coefficient for each 
uncertainty parameter was calculated by the AECL-IPPE 1995 CHF table with HBM at the nominal 
condition. As a result of the analysis, the maximum sensitivity appeared for the inlet temperature 
variation. Actually, the importance of a parameter to the overall uncertainty is not in accordance with the 
magnitude of sensitivity coefficient. The contribution of a parameter to the overall uncertainty can be 
estimated from the importance factor (IF), which is calculated by combining the coefficient of variation 
and the sensitivity coefficient. For a parameter i, it is calculated by 
 

� � !
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2

i i i
i all

k k k
k

S
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� �

� �
�

� 	
 ��
     (7) 

 
According to the importance factor, major contributions to the overall uncertainty of DNBR were due to 
the heat flux, inlet mass flux, turbulent mixing parameter, inlet temperature, and bulk void model. For the 
selected CHF data provided in Table II, the input uncertainty was estimated as 1.03% from eq. (6). The 
uncertainties of axial/radial power distributions were not accounted for in the sensitivity coefficient 
approach. 
 
The numerical uncertainty of the MATRA code has been assessed using the method of manufactured 
solution [11]. From a preliminary result of solution uncertainties of the MATRA code for an axial flow, 
crossflow, and enthalpy, the numerical uncertainty for evaluating DNBR was estimated as 0.76%. As 
described in Section 2.1, the uncertainty of measured CHF data (uM) was estimated as 0.68% from the 
instrumentation error during the CHF experiments. By combining these uncertainties according to eq. (4), 
the validation uncertainty of the CHF prediction model against this selected CHF data was estimated as 
1.45% by the sensitivity coefficient approach. 
 
 

 
Figure 6.  Sensitivity Coefficients and Importance Factors for CHF Lookup Table Method. 
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3.4.  Monte-Carlo Approach 
 
Nonlinear effects on the propagation of input parameter uncertainties to the simulation results were 
evaluated by employing a direct Monte-Carlo approach. The variation of DNBR was calculated at the 
minimum DNBR (MDNBR) location for 2000 simple random samplings of each input parameter. Under 
nominal condition of input parameters, the MDNBR was predicted at the relative axial level of 0.82. A 
distribution of E evaluated from 2000 sets of random input parameters is shown in Fig. 7. The population 
of E was regarded as a normal distribution at a 5% significance level by the Kolmogorov-Smirnov 
normality test. Because the measured CHF is also applied to predict the CHF through the MATRA code, 
the measurement uncertainty of the CHF is implied in the uncertainty distribution of DNBR by the 
Monte-Carlo simulation as well as the input uncertainty. 
 
 

 
Figure 7. Distribution of DNBR uncertainty by Monte-Carlo approach due to uinput and uM 

 
 
The combined uncertainty of uinput and uM estimated by the Monte-Carlo approach was compared in Fig. 8 
with that estimated by the sensitivity coefficient approach at different axial levels. When the uncertainties 
of axial and radial power distributions were not considered (Monte-Carlo Approach-1), the combined 
uncertainty was evaluated as 1.03% while it was 1.23% by the sensitivity coefficient approach. The 
combined uncertainty increased up to 1.13% when the uncertainties of the power distributions were 
accounted for (Monte-Carlo Approach-2). By accounting for the numerical uncertainty of the MATRA 
code, the validation uncertainties of the CHF prediction model by the Monte-Carlo approach with and 
without the uncertainties of radial/axial power distributions were estimated as 1.36% and 1.28%, 
respectively. 
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Figure 8. Comparison of uncertainties at different axial level 

 
 
3.5.  Influence of Experimental Uncertainty on the Correlation Limit DNBR 
 
The validation uncertainty evaluated in the preceding sections represents an uncertainty of the normalized 
P/M (i.e., /P M� ) which accounts for the input uncertainty, measurement uncertainty, and numerical 
uncertainty. The experimental uncertainty propagates to the predicted CHF through the MATRA code. As 
a result of the parametric study, it appears that the uinput tends to increase as the mass velocity decreases 
and/or the rod power increases. In this study, the influence of experimental uncertainty on the limit DNBR 
was illustrated by imposing a single value of validation uncertainty on the CHF database which was 
employed in section 2.2.  
 
The limit DNBR for a CHF correlation is usually determined from the distribution of M/P which were 
calculated on the basis of the nominal values of predicted and measured CHF. The correlation limit 
DNBR can be evaluated by eq. (2) for a normally distributed M/P database. On the other hand, if the 
experimental uncertainty is accounted for, each M/P becomes a random variable with a standard deviation 
corresponding to the validation uncertainty. In this case, the correlation limit DNBR for the CHF database 
can be evaluated by the following procedure: 

 
 
(i) Conduct a random sampling of P/M for a selected CHF data according to the normally distributed 

pdf and the validation uncertainty. 
(ii) Repeat (i) for all CHF data, and evaluate the correlation limit DNBR (LDNBRi) for the sampled 

set of database by eq.(2) 
(iii) Repeat (i) ~ (ii) for a predetermined number of samples (2000 samples for this study) 
(iv) From the mean and standard deviation of the LDNBRi for the 2000 samples, the correlation limit 

DNBR considering the experimental uncertainties (LDNBRUNC) was evaluated by 
 

UNC 95/95i iLDNBR LDNBRLDNBR X k s� � �     (8) 
 
where k95/95 is 1.703 for 2000 sample data [9]. Figure 9 depicted a relationship between the imposed 
validation uncertainty and the change of limit DNBR with respect to the reference value (i.e., 
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LDNBRref=1.174 as evaluated in section 2.2). When the validation uncertainty of 1.36% estimated from 
the Monte-Carlo approach was imposed on the 437 CHF data points for the SMART test bundles, it was 
appeared that the correlation limit DNBR increased about 0.5% by the following equation. 
 

Change of Limit DNBR (%) 100UNC ref

ref

LDNBR LDNBR
LDNBR

�
�

�     (9) 

 
 

 
Figure 9. Influence of validation uncertainty to the limit DNBR 

 
 
4. CONCLUSIONS  
 
An accuracy of the AECL-IPPE 1995 CHF lookup table was evaluated for rod bundle CHF data under 
advanced PWR conditions. A complementary bundle correction factor, as a function of the pressure, mass 
flux, and grid spacing, was devised on the basis of local parameters calculated by the MATRA code. 
 
The influence of the CHF experimental uncertainty on the prediction of CHF was examined on the basis 
of the V&V procedure issued by ASME. From the Monte-Carlo approach with 2000 simple random 
samplings, the combined uncertainty of uinput and uM was evaluated as 1.13%. By combining with the 
numerical uncertainty (0.76%), the validation uncertainty of CHF prediction for the selected CHF data 
was evaluated as 1.36%.  
 
The influence of the validation uncertainty to the limit DNBR was illustrated by imposing a single value 
of the validation uncertainty on the 437 CHF data points for SMART test bundles. As a result of the 
analysis, it appeared that the limit DNBR increases about 0.5% when the validation uncertainty of 1.36% 
was applied to the CHF database. 
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