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ABSTRACT 
 
In measurement technology it is good engineering practice to estimate the uncertainties in the 
measurements. Estimates of the uncertainties in results from numerical simulations are much less 
common. This can partly be explained by the additional computational cost it involves. This cost is a 
function of which method is used to propagate the input and model uncertainty to the result. Some 
methods require a large number of repeated simulations. Other methods suffer from the “curse of 
dimensionality” and can realistically only treat a few uncertain parameters. A novel method, called 
deterministic sampling (DS), is proposed to quantify the uncertainty in a numerical flow simulation and 
does not display the previously mentioned shortcomings. The new method is efficient since relatively few 
simulations are required, and many parameters can be present. In this paper the method is exemplified by 
uncertainties originating from turbulence model constants. The method is based on the idea that a 
continuous probability density function can be replaced by an ensemble of discrete deterministic samples, 
provided the two representations have the same statistical moments. The method is first illustrated in a 
simple example, and later applied to the classic simulation of turbulent flow over a backward-facing step. 
The results obtained here are similar to what other researchers have found using Latin Hypercube 
Sampling for the same case, but at a lower computational cost. Both methods show that much of the 
experimental results fit within the calculated uncertainties, but not all of them. This indicates the presence 
of systematic uncertainties in the turbulence model, and/or systematic problems in the experimental setup, 
such as lack of two-dimensionality in the flow. Uncertainties from other origins, such as boundary 
conditions and sources, can be also included in the method if desired. The DS method is also not limited 
to fluid flow simulations and can for example be applied to systems analyses codes in thermal hydraulics.   
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1. INTRODUCTION 
 
Two experimental results can only be compared if they both have an uncertainty associated with them, 
often represented by mean values and uncertainty bars. If there is an overlap in the two uncertainty bars, 
the two measurements are said to be consistent, i.e. there can exist a value which can fit inside both 
uncertainty bars. It seems natural that the same should be done when comparing numerical results with 
experimental data, or results from two numerical simulations. Currently, there are several approaches 
available to evaluate uncertainty in simulated results, but many suffer from poor efficiency and are 
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therefore not appealing. A new method, Deterministic Sampling (DS) [1], used for Uncertainty 
Quantification (UQ), is introduced in this paper to offer an efficient alternative. In numerical simulations, 
uncertainties are associated with a number of input parameters. The turbulence models and models which 
depict the transportation of heat, mass, and concentration, all contain parameters, or model constants, 
which values are often determined from experimental data. The uncertainties of the constants are as big as 
the experimental uncertainty they are based on. Other sources of uncertainties also stem from boundary 
conditions, geometry, material and fluid properties. On top of all this, we have the uncertainty due to 
inadequate mesh resolution of the computational domain, and the discretization of the equations. It is 
advisable that grid independent solutions will be reached before using the DS method. Code 
implementation errors can also introduce epistemic uncertainties which are difficult to quantify. The 
physical models also contain epistemic uncertainties since they cannot mimic all physical phenomena. 
Epistemic uncertainties can be handled by performing calibration of the numerical model. This is the 
subject of Inverse Uncertainty Quantification, or System Identification, which is not within the scope of 
the present paper. However, the DS method can favorably be applied for this task too [2]. 
 
If the model equations are linear, the method described in [3] can be used. The recommendation in [3] for 
situations where the parameters propagate non-linearly through equations is to apply the Monte Carlo 
(MC) method, [4,5]. This method requires several thousands of simulations with different, randomly 
generated, combinations of parameter values. Since most CFD simulations take hours, or sometimes days, 
this is an unrealistic approach. The system of transport equations in CFD is not linear with respect to the 
parameters, and therefore an alternative method is needed, which is the motivation for the present paper. 
A linear approximation of a non-linear function leads to a poor estimate of the mean output value [6]. 
Thankfully there are several alternative methods to the MC method, which are more efficient, i.e. requires 
fewer simulations, to determine how the uncertainties in the input parameters translate, or propagate, into 
an uncertainty of the output result. The low convergence rate of the MC method may be improved by 
partially controlling the distribution of samples deterministically using stratified sampling techniques, 
such as the Latin Hypercube Sampling (LHS) [7], a method born in the field of safety of nuclear reactors. 
Alternatively, large MC ensembles can be allowed for by substituting the complex model with a simple 
approximation, as in the Response Surface Methodology (RSM), also explained in [7]. Polynomial Chaos 
(PC) method is a non-sampling based method to determine the uncertainty, originally proposed by [8]. 
More recent work using PC is exemplified in [9, 10]. Yet another approach is the sensitivity based 
Adjoint Method (AM) [11]. Very rarely the selection of samples is calculated and optimized with 
deterministic rules. This paper will introduce the method of Deterministic Sampling (DS) [1], which has 
its roots in the field of signal processing and the Unscented Kalman Filter (UKF) [12]. The method will 
be used to estimate how the uncertainties, in some of the input parameters, propagate in the results in a 
CFD calculation. The main advantage of the DS method is that it requires relatively few samples, which 
translates into much less computational work compared with most other mentioned methods, for the 
equivalent accuracy. A known continuous probability distribution function of the input parameter, can be 
approximated by an ensemble with discrete samples, if they provide equally valid representation of the 
relevant statistics, such as the mean value and the higher statistical moments, i.e. the variance, the 
skewness, the flatness etc. In practice, the knowledge of the higher moments is often limited. They are 
assumed known when a continuous probability distribution is introduced for an input parameter. Many 
times the available information for the distribution is limited to its mean and its covariance or just its 
standard deviation. In such a case, it will suffice to have a few discrete samples in an ensemble to 
calculate the mean and the standard deviation, compared to the many thousands of samples that would be 
required using the MC-method. Section 2 begins by showing a simple example where the performance of 
the DS method is compared with the MC method for a non-linear model. In Section 3, three different sets 
of ensembles are prepared to be used in a CFD example which contains five independent uncertain 
parameters. Section 4 describes the CFD example, and Section 5 presents the results and analysis of the 
uncertain quantification in the simulations. Finally, in Section 6, we summarize our contributions in the 
conclusions. 
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2. A SINGLE PARAMETER EXAMPLE USING THE DETERMINISTIC SAMPLING 
METHOD 

 
Let h be a non-linear function  where  is an uncertain parameter: 
 

        (1) 
 
Assume the parameter, q, has a normal probability density function (pdf) distribution with an expected 
value, , and a standard deviation, . A MC simulation will be performed for this case and 
will be compared with a DS simulation where initially only two samples are used. The fundamental idea 
of the Unscented Transform in the UKF is that it is easier to approximate a probability distribution than it 
is to approximate an arbitrary nonlinear function or transformation [12]. In the original Unscented 
Transform [12] for one parameter, two sigma points in an ensemble can be chosen as; 
 

      and                                              (2) 
 
The mean value, and the standard deviation of these two points, is identical to the mean and standard 
deviation of the continuous normal pdf distribution. Propagating these two samples will give; 
 

     and                   (3) 
 
The output average and standard deviation from the ensemble, containing two samples, DS2; 
 

       (4) 
 

 =13.312    (5) 
 

Figures 1 and 2 are illustrations of how many samples the MC method requires to reach their designated 
values of the statistical moments. As can be seen in both figure 1 and 2, it takes thousands of samples 
before the statistics finds their asymptotic value which are; 
 

     and          (6) 
 
A surprisingly good agreement between the computed expected values from the DS and the MC method 
can be observed. However, the standard deviations differ.  
 

 
Figure 1. The expected value of the parameter q and the standard deviation as a function of 

number of random samples. 
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Figure 2. The expected value of the parameter h and the standard deviation as a function of 

number of random samples. 
 
By selecting only two samples in the DS-method only the first and second moment will agree with the 
normal pdf for q. For the MC example a continuous probability distribution function was assigned, where 
all the higher moments are assumed known. The third moment, the skewness, is zero for a normal pdf. 
The fourth moment normalized with the standard deviation to the power of four, sometimes called the 
flatness, is equal to three. An example of a DS ensemble that would satisfy the first-, second-, third-, and 
fourth moments could read; 
 

 ,  ,  and      (7) 
 
Each sample has a weight, , associate with them, see [12, 13], chosen in this example to be; 
 

,  , and          (8) 
 
Then the four lower moments are satisfied, 
 

                         (9) 
          (10) 

         (11) 
        (12) 

 
The sum of the weights equals one. 
 

         (13) 
 
By using these three samples we get; 
 

   (14) 
 

  (15) 
 

Both the mean and the standard deviation agree well with the results obtained from thousands of samples, 
in the MC-method. This is achieved with just three deterministic samples. The results are summarized in 
table I. 
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Table I. Expected values and standard deviations 

 
Method DS2 DS3 MC 

Expected value 19.87 19.91 19.87 
Standard deviation 13.31 15.37 15.43 

 
 
To be able to use the MC method, a continuous probability density function was assumed. From it, all the 
higher moments can be calculated. In practical cases, it is not unusual to just have knowledge about the 
variance, possibly the covariance, and the mean value of a parameter. Applying a continuous probability 
density function as done in the MC-method is pure guesswork, and the DS method will suffice. In 
addition, by including more samples in the ensemble of the DS method, arbitrarily high statistical 
moments can be reproduced, if they are known. 
 
3. DETERMINISTIC SAMPLING ENSEMBLES FOR MULTIPLE PARAMETERS 

 
The example in Section 4 will contain five uncertain parameters. They are the following turbulence model 
constants; , , , κ, and , present in the standard k- -model [14]. These five parameters, see table 
II, were used in the study by [15] where the LHS method was applied to quantify the uncertainty of the 
turbulence model. 
 

Table II. Uncertain turbulence model parameters 
 

Parameter Probability density function Constants 

 Weibull     
  

 Beta 
 

  ,  
 ,  

 Normal     
 

κ    Normal     
 

 Normal     
 

 

3.1 The Ensembles 
 

Three different ensembles of samples will be prepared which are going to be used in the DS method. The 
first ensemble will be selected so the samples only satisfy the expected value and the standard deviation 
for all the parameters. In the second and third ensemble, the selected samples will in addition satisfy the 
third- and fourth statistical moment of the parameters. For the latter two ensembles, non-uniform weights 
will be associated with the samples. 
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3.2 The Binary Ensemble 
 
The first ensemble will be constructed in accordance with the binary ensemble, described in [1]. For the 
five parameters the so-called excitation matrix becomes; 
  

   (17) 

 
This is a table of canonical samples. The eight columns are the necessary samples for the five different 
parameters in the rows. A full binary table for five parameter would contain 32 samples, but the selected 
eight samples suffice to describe the expected zero means and unit standard deviations of the parameters 
[1]. The binary sample values need to be transformed, to satisfy the actual parameter statistics of the DS 
ensemble . This is done using [1, eq.3.4]; 
 

      (18) 
 
The vector with the five uncertain parameters are, , and m = 8 is the number of 
samples. The matrix U was introduced in [1] to allow the parameters to have a dependency, in which case 
there would be non-zero entries in the off-diagonal elements in the covariance matrix for the parameters. 
In our example the parameters are assumed to be independent, i.e. , where  is the identity matrix. S 
is the standard deviation scaling matrix, which allowed the ensemble to be written in a generic form. The 
eight samples in the ensemble, , can be written explicitly. See table III. Table III constitutes the first 
ensemble. In the CFD example of Section 4, simulations will be performed using these eight 
combinations of parameter values as samples. 
 

Table III. Samples in binary ensemble 
 

sample q1 q2 q3 q4 q5 
1      
2      
3      
4      
5      
6      
7      
8      

 

3.3 Ensemble with Weighted Samples for Higher Statistical Moments 
 
Unlike the first ensemble in 3.2 which only satisfies the first and second statistical moments the second 
ensemble will be assembled to satisfy the first four statistical moments. In the example for one parameter 
(Section 2), an ensemble with three samples was used to satisfy the first four statistical moments. This 
ensemble can be reused for the three parameters , , and , which all have normal distributions 
according to table II. The parameter  will be given the following three samples; 
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 ,  ,  and       (19) 
 
Each sample has a weight associated with them, 
 

 ,  , and          (20) 
 
A similar ensemble construction can be used for the parameters four and five, q4 and q5. The fact that 
three well-chosen samples can satisfy all the statistical moments up to the fourth moment is a special case. 
Five equations need to be satisfied, and in a general case five samples will be needed. For the first 
parameter  the requirements are; 
 

 
 

 
 

          (21) 
 
This can be achieved in two ways. One, where the weights are assumed to be equal, , and solve 
the non-linear system represented by equations 21 to find . However, it is not always possible to find a 
solution. With the present Weibull distribution, we cannot find a solution with real roots for all . The 
second way is to choose the samples  first, and then find the weights, , in the set of equations 21. 
The system of equations is linear with respect to , meaning that a solution can always be found. The 
only possible way forward appears to be, to first select the samples, and then find the weights to satisfy 
the system of equations 21. Having introduced the weighted samples, it allows some freedom how the 
samples are chosen. The five samples could be chosen in a first attempt to be; 
 

, ,  , ,  and    (22) 
 
By calculating the statistical moments of the Weibull distribution, and inserting them in equation 21 
together with the suggested samples in equation 22, the weights, , can be computed. 
 

,  , , and       (23) 
 
According to [12] the weights do not have to be in the range [0,1] as long as their sum equals one. 
However, even statistical moments of higher order, like the 6th or 8th moment for which we impose no 
requirement, could become negative by allowing negative weights. This is clearly prohibited and has 
potentially an influence on the results. One such problem, associated with negative weights, is identified 
in the results in Section 5, but works in all other cases. The remaining ensemble to be selected is for the 
second parameter, q2 see table II, which has an assumed beta pdf distribution in the work by [15]. An 
identical ensemble can be selected for the parameter 
 

,  ,  , ,  and     (24) 
 
By solving a similar equation system to 21, but for the parameter , the weights, , assume the 
following values; 
 

,  , , and       (25) 
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All the samples,  , and associated weights,  , for the five parameters, , have now been calculated 
to represent their individual marginal pdf’s. All the nineteen samples can be lumped into a grand 
ensemble. Five of the samples are identical, namely the zero or center sample. The zero or center sample 
is the sample that represents the average parameter value, i.e., , , , , and .Thus the 
number of samples is reduced to fifteen by adding up the five weights for the zero sample. The sum of all 
weights from the five parameters equal five, however, the sum should be one. This can be adjusted by 
reducing the weight for the zeroth sample by four. The zero sample weight will then become; 
 

  (26) 
 
This is the second total ensemble and it now satisfies all the marginal pdf’s, as well as the requirement on 
the sum of weights to be one. 
 

3.4 Ensemble with Annealed Weighted Samples 
 
Non-uniform weights of the samples provide a lot of freedom to select the samples. As pointed out 
earlier, using negative weights might produce unrealistic negative values for higher, even, statistical 
moments. This can be remedied by finding samples such that their weights are always positive. This is not 
a trivial matter and will lend itself to further development. The samples for , , and  all have 
positive weights associated with them. These samples can be kept as is. To avoid negative weights in the 
ensemble for the parameters, , and , the samples must be modified. Finding an analytical solution on 
how the samples should be modified has proven to be difficult. As mentioned above, choosing the 
weights, and then solving the non-linear equations for  does not always produce a solution with real 
roots for all samples. A trial and error procedure has been adopted to randomly generate the samples in 
the ensemble, whereafter the weights are analytically calculated. If the weights are all positive, and are 
more evenly distributed than in the previous attempt, the new best ensemble replaces the old best 
ensemble. This process is called annealing. 
 
The Weibull distribution, with its first four statistical moments, can also be represented by the following 
deterministic samples; 
 

, , , , and     (27) 
 

and their associated weights, 
 

, , , and    (28) 
 

for the first parameter,  in table II. 
 
With the same process, an ensemble can be found to represent the statistical moments of . It will 
read; 
 

, ,  , ,  and     (29) 
 
with their associated weights, 
 

,  , , and    (30) 
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Again, the sum of all weights from five parameters equals five. As before the weight for the zero sample 
will be reduced by four. The zero sample weight will in this case become; 
 

    (31) 
 

This particular weight is negative, but for the individual marginal distributions there are no negative 
weights. This will eliminate the risk of producing negative higher even statistical moments. The  is 
introduced to not count the center sample more than once. This is the third total ensemble, containing 17 
samples, which satisfies all the marginal pdf’s, and also . The next sections will describe and 
compare the simulation results and their uncertainty, for a well-known fluid problem, using the three 
ensembles discussed in this section. 
 
4. BACKWARD FACING STEP EXAMPLE 
 
The flow over a backward-facing step in figure 3 is a generic problem and has been studied numerically 
by many in the CFD community. An example where uncertainty quantification is performed on this 
problem is the work by [15]. They used the LHS method with 400 samples. 
 

 
Figure 3. Backward-facing step geometry 

 
In the present three ensembles, 8, 15, and 17 samples are used. To be able to make a direct comparison 
with their results, this study will use the same software, OpenFOAM [16], the same turbulence model 
[14], alter the same parameters in it, and use an identical computational grid. The difference will be in the 
method used to propagate the uncertainty of the turbulence model constants through the system of 
transport equations. The result from the experiment by Kim [17] is the reference to judge if the numerical 
results are consistent with the measured data. As previously mentioned, the numerical result, and the 
experimental results, are consistent if there is an overlap of the two uncertainty bars. Otherwise they are 
inconsistent. For example, the mean value of numerical results can be outside the uncertainty bar of the 
experiment, but still be consistent as long as there is an overlap of the two uncertainty bars. The seven 
constants in the turbulence model [14] will be viewed as uncertain. They are; , , , , , , and 
B. Five of them are listed in table II, and are assumed to be independent. According to [18] and [15],  
and  are functions and are dependent on some of the five independent parameters. 
 

       (32) 

 

     where       (33) 

 
In many implementations of the k-ε model a constant , is used in the wall function instead of . 
 

        (34) 
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The step height, h, in Figure 3 is resolved with 21 equally spaced control volumes with an aspect ratio of 
one. The Reynolds number in the present case is, , based on the outlet channel height and the 
inlet velocity. The inlet turbulence intensity is set to 5%, and a uniform inlet velocity profile is assumed. 
The inlet dissipation rate of kinetic energy is set to , where the turbulent length-scale is 
estimated to be . 
 
5. RESULTS 
 
Each ensemble will require as many simulations as there are samples in it. The result from a simulation is 
then multiplied by the weight the sample was associated with. Results will be presented for the velocity, 
U, the turbulent kinetic energy, k, the pressure coefficient on the walls, Cp, and the reattachment length, 

. The mean and the standard deviation for these quantities can be calculated from; 
 

  ,  and     (35) 

 
where  can be any of , , , or , and N is the number of samples in the ensemble. The results can 
be directly compared with the ones produced by [15], since the case, software, and mesh size are the 
same. No MC simulation has been attempted since the number of samples required would be 
discouragingly many. Not only would the CPU usage be large, but it would also be difficult to check if all 
performed simulations are correct. 

5.1 The velocity profiles 
 
The average streamwise velocity component was measured at several stations downstream of the step by 
[17]. Some of them are shown in the figure 4. The computed non-dimensional velocity profiles using the 
three different ensembles presented as , where  is the velocity at the center of the 
inlet. The results for the three ensembles are indistinguishable. The uncertainty in the hot-wire 
measurements quoted in, [17] as being 1%. At the locations  and the simulated results 
are consistent with the measured velocity profiles as they lie in the interval . At the other locations 
there is only a partial overlap, or no overlap, of the two uncertainties. Clearly, the uncertainty of the 
simulated results does not encompass the measured results. Several explanations are possible. Systematic 
uncertainties can be present in either the measurements and/or in the turbulence model. Physical 
experiments often have difficulties to produce the intended two-dimensional flow field and this is a 
systematic uncertainty. The assumed uncertainty of the turbulence model constants might also be too 
optimistic. The uncertainty of the inlet conditions does play a role, but is not included in this study. Many 
would blame the turbulence model and switch to a more elaborate model. However, all turbulence models 
have yet failed to work under all circumstances. Regardless of which turbulence model is used, there will 
be discrepancies with the reference data. A logical step forward, from an engineering point of view, is to 
calibrate the turbulence model for the case at hand. This means giving up on the idea of ever finding a 
correct model, but settle for a model, with calibrated constants, which will work, i.e. give results with an 
acceptable tolerance level, for a particular case. A better turbulence model will just imply that the 
adjustment to the constants needs to be smaller. 
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Figure 4. Streamwise velocity component, , maximum and minimum. Results using the binary 

ensemble (solid lines), the 2nd ensemble (dashed lines), and the 3rd ensemble (dotted lines). 
Measurements [17] (circles). The results from the three ensembles are indistinguishable. 

5.2 The turbulent kinetic energy profiles 
 
The kinetic energy profiles shown in figure 5, the numerical results show only a slight difference for the 
three ensembles, at stations downstream of the step. The binary ensemble produces the smallest 
uncertainty. The measured data of the Reynolds’ stress components have a 10% to 20% uncertainty 
associated with them. Only two of the three normal Reynolds stresses are measured, , and , . In 
order to make a comparison of the turbulent kinetic energies, the third component, , has to be 
estimated. Its value is conjectured to be somewhere in between the value of the other two components. 
This makes the uncertainty large for the kinetic energy derived from the experiments, see figure 5. In 
most areas the measured and computed results are consistent, i.e. there is an overlap of the two 
uncertainties. 
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Figure 5. Turbulent kinetic energy, , maximum and minimum. Results using  

binary ensemble (solid lines), 2nd ensemble (dashed lines), and 3rd ensemble (dotted lines).  
Measurements [17] (uncertainty bars). Results from the three ensembles are for the most part 

indistinguishable. 
 

5.3 The reattachement length 
 
The reattachment length, , is illustrated in figure 3. In the measurements [17], the length was observed 
to be , using tufts. The simulations, using the binary ensemble, produced a reattachment 
length, . The third ensemble gave a value, , of . The 
results from the measurements and the simulations are thus consistent in both cases. The ensemble that 
satisfies higher moments indicates a larger uncertainty in the results. Interestingly, the second ensemble 
produced a non-physical negative variance for . Using the negative weights associated with this 
ensemble, the average value became, , which is larger than the largest value observed in the 
15 samples, which was . This clearly demonstrates that it can be problematic to use negative 
weights, even if it was tolerated in the original UT-formulation [12]. 
 

5.4. The pressure coefficient on walls 
 
The pressure coefficient is defined as; 
 

        (36) 
 
where P0, is the pressure at the center of the inlet. The distribution of the pressure coefficient on the lower 
and upper wall, after the step, is shown in figure 6. The uncertainty of the measurement of Cp is quoted to 
be 1%. The largest uncertainties in the present simulations appear around the reattachment zone. The 
results from second and third ensemble are very similar, and the uncertainty is larger than for the binary 
ensemble that just satisfies the first and second statistical moment of the input parameters. At most 
locations the experimental results are consistent with the results from the theoretical model. 
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Figure 6. Pressure coefficient distribution, , on walls after the step. Results using  

binary ensemble (solid lines), 2nd ensemble (dashed lines), and 3rd ensemble (dotted lines). 
Measurements [17] (circles). The results from 2nd and 3rd ensemble are indistinguishable. 

 
6. CONCLUSIONS 
 
This paper has presented a new method to propagate uncertain input parameters to results produced with 
CFD. The parameters have been chosen to be the turbulence model constants of the standard k-ε model 
[14]. Five of the parameters are independent, and have an assumed known continuous pdf. The remaining 
turbulence model constants are assumed to be functions of the five parameters. Instead of using the 
continuous pdf, these parameters have been approximated with a discrete number of samples into an 
ensemble that can produce sufficiently high statistical moments. Based on the results of this study, it 
appears to be sufficient to satisfy the first four statistical moments. Satisfying yet higher statistical 
moments did not lead to increased uncertainty. It appears that ensembles containing samples that are 
associated with negative weights, can give reasonable results. However, this should be treated with care, 
since it can potentially produce unrealistic, non-bounded, average values and non-physical negative 
statistical moments of even order. Eight samples are enough to represent the mean and the covariance for 
the five parameters. The skewness and flatness can be represented using an extra seven to nine samples. 
This produces a more reliable uncertainty quantification of the results, but at the expense of an increased 
computational cost. Still the DS method is very lean. The LHS approach by [15] required 400 samples, 
which translates into 400 individual simulations.  
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