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ABSTRACT 
 
The gas entrainment (GE) due to a hollow vortex has been studied theoretically, experimentally and 
numerically to establish the design of a sodium-cooled fast reactor which can be operated stably without 
the core power disturbance caused by entrained bubbles. As a part of the GE study, the authors are 
developing a high-precision numerical simulation method to evaluate the GE phenomena accurately. The 
simulation method has been already applied for the simulations of some GE experiments and the 
simulation results show good agreement with the experimental data. The verification and validation 
(V&V), however, has not been conducted enough to show the uncertainty of the simulation method 
because the GE is a highly complicated phenomenon and there are few theoretical and/or experimental 
data which can be employed for the V&V study. In such a case, the method of manufactured solution 
(MS) is a promising method to evaluate the numerical error. Few MSs, however, are proposed for the 
flows with dynamic gas-liquid interface movement due to the difficulty in modeling mathematically the 
flow-interface interaction. In this paper, the authors develop a new MS which models the GE, i.e. the 
dynamic interfacial deformation due to a hollow vortex. The MS is considered on an axisymmetric system 
and radial, circumferential and axial velocities and pressure are formulated to satisfy the continuity 
equation and the boundary condition on an interface. The interfacial dent grows with time and a gas 
bubble is generated when the lower part of the interfacial dent is pinched off. The numerical simulation 
with the authors’ high-precision method shows reasonable agreement with the MS in terms of the 
interfacial dynamic behavior including the bubble pinch-off. In addition, it is confirmed that the 
simulation accuracy is enhanced by increasing the mesh resolution. Therefore, the developed MS is 
considered as a good problem for the verification of an interface-tracking method. 
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1. INTRODUCTION 
 
The interface-tracking method, e.g. volume-of-fluid method [1-3], level-set method [4,5] or front tracking 
method [6], is used frequently in recent years to simulate accurately the complicated gas-liquid two-phase 
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flows with large interfacial deformation. The authors also have been developing a two-phase flow 
simulation code to evaluate the gas (bubble) entrainment phenomena induced by a hollow vortex formed 
at a cover gas-coolant interface in the reactor vessel of sodium-cooled fast reactors [7-9]. This simulation 
code uses a high-precision volume-of-fluid method (PLIC-VOF [10,11]) to simulate interfacial dynamic 
behaviors accurately. In fact, the simulation results of several GE experiments show good agreement with 
the experimentally observed data, e.g. the GE occurrence mechanism [12,13] or GE flow rate [14]. 
Therefore, the applicability of the authors’ simulation code to the GE phenomena is confirmed by those 
validation studies. 
 
In these days, systematic verification & validation (V&V) with quantitative numerical error evaluation is 
required strongly as the responsibility of code developers [15-17]. Therefore, not only the comparison of 
the simulation results and the experimental data but the fundamental verification is necessary to check the 
simulation accuracy of each calculation method employed in the code. In particular, the reproducibility of 
interfacial shape should be confirmed carefully in the V&V of an interface-tracking method. There are 
some basic problems, e.g. the slotted-disk revolution problem [18,19], known to be employed for suitable 
verifications. The Kelvin-Helmholtz instability or dam-break problem [20,21] also can be employed for 
the V&V of the interface-tracking calculation in relatively simplified flows. These simple problems have 
solutions (a rigorous solution or high-accuracy measurement data) which can be used for the evaluation 
of the simulation error with the grid convergence test, for example. However, the V&V in realistic flows, 
e.g. the vortex with the GE in our research, is highly difficult due to the lack of reliable reference data. In 
usual, there is no suitable verification problem for such complicated flows. Even worth, the experimental 
measurement of interfacial shape with code V&V quality is difficult when complicated interfacial shape 
varies rapidly with time. 
 
The method of manufactured solution (MMS) is a promising way to formulate an appropriate verification 
problem for complicated flows. Even when there is no suitable verification problem due to the complexity 
of considering flow, a MS can be formulated and used for the code V&V. Therefore, the MMS is used 
widely in various code V&V studies on single-phase flows. On the other hand, two-phase (interfacial) 
flows have a moving interface whose modeling is one and primary difficulty in the formulation of the MS 
for an interfacial flow. In fact, only a few studies on the MMS for two-phase flows [22-24] have been 
reported as far as the authors know. 
 
In this paper, the authors develop a new MS which models the GE, i.e. the dynamic interfacial 
deformation due to a hollow vortex. The MS is considered on an axisymmetric system and radial, 
circumferential and axial velocities and pressure are formulated to satisfy the continuity equation and the 
boundary condition on an interface. The interfacial dent grows with time and a gas bubble is generated 
when the lower part of the interfacial dent is pinched off. As the fundamental check of the validity of the 
formulated MS, numerical simulations are performed with the authors’ simulation code and the 
simulation accuracy is evaluated. 
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Figure 1.  Schematic View of Vortex-type Gas Entrainment.

2. FORMULATION OF MANUFACTURED SOLUTION 

In this paper, we formulate a manufactured solution which represents an axisymmetric vortex with a gas 
core elongated along the vortex core. 

2.1.  Basic Equations 

The basic equations of the manufactured solution are the continuity equation and the axisymmetric (r-�-z 
coordinate system) Navier-Stokes equation. It should be noted that the GE is induced by a vortical flow in 
liquid phase and the influence of gaseous flow is negligible. Therefore, only the liquid region is 
considered in the manufactured solution. 
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In Eqs. (2)-(4), � is the dynamic viscosity, � is the liquid density and g is the gravitational acceleration. u, 
v and w are the velocity components in r, � and z directions, respectively. The approximate solution of the 
velocity components is determined in Section 2.2. In addition, fr, f� and fz show pseudo force in each 
coordinate direction. They are calculated in Section 2.4. The physical condition at a gas-liquid interface is 
also considered in the manufactured solution. 
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The subscript s indicates the values on the interface. rs is the interface radius from the symmetric axis, 
which is the equation of z and t. Equation (6) indicate the pressure at the interface is constant (p0). 
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2.2.  Approximate Solution 

As the manufactured solution, the approximate solution of the Navier-Stokes equation has to be 
determined to satisfy also Eqs. (1) and (5). In the first place, the radial and vertical velocity components 
are determined. 
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� is a positive constant which determines the magnitudes of the radial and vertical velocity components. 
R is the radius of the radial boundary and the rs is defined as rs = R at the origin of the z direction (z = 0) 
which is the upper limit of the liquid region (see Fig. 3). By substituting Eqs. (7) and (8) into Eq. (1), it is 
checked that the continuity equation is satisfied. 
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The first term in the R.H.S. of Eq. (7) is similar to that in the Burgers vortex equation [25]. Therefore, the 
approximate expression of the circumferential velocity component is determined in reference to the 
Burgers vortex equation. 
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� is the circulation and � is the characteristics value which determined the vortex velocity distribution. 
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To determine the approximation expression of the pressure, the mechanical balance between the gravity 
and the centrifugal force induced by the circumferential velocity (Eq. (9)) is considered. In addition, Eq. 
(6) is also considered to satisfy the pressure condition at the interface. 
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� is a positive constant calculated by the pressure value at the radial boundary. L is the depth of the 
interface, i.e. the gas core length. 

2.3.  Interfacial Shape 

The interfacial shape in the manufactured solution can be determined arbitrarily. In this paper, we employ 
the following quartic equation. 
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k is a function of time, which indicates the ratio of L at each elapsed time to the terminal gas core length 
(Lmax). Equation (12) can be rewritten as follows. 
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The first bracketed term in the R.H.S. of Eq. (13) (quadratic term) represents the fundamental interfacial 
shape and the second bracketed term (quartic term) represents the interfacial deformation from the 
fundamental shape, which increase with time. Figure 2 shows the interfacial shape at each elapsed time 
until the terminal time (t = tmax). The interface contracts with time at around z = -0.3 and the interface 
collapse finally at t = tmax to change the interfacial topology and form a gas bubble. 
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Figure 2.  Interfacial Shape Deformation in Manufactured Solution. 

It should be mentioned here that Eq. (8) shows the vertical velocity at the gas core tip (rs = 0) is always 
�R2. Therefore, the following relationship has to be satisfied. 
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Lini is the initial gas core length.  
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2.4.  Pseudo Force 

By substituting the approximate solution of the velocity components and pressure (Eqs. (7), (8), (9) and 
(11)) into the Navier-Stokes equation (Eqs. (2)-(4)), the pseudo force can be calculated as follows. 
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srsr  and sr�  are calculated as the derivatives of Eq. (12). 
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With above pseudo force, the approximate solution satisfies simultaneously the Navier-Stokes equation, 
continuity equation and physical condition at the interface. Therefore, the determined approximate 
solution is considered as a manufactured solution. In the study on the verification of a gas-liquid two-
phase simulation code, the Navier-Stokes equation with the pseudo force is simulated and the results are 
compared with the manufactured solution to evaluate the simulation accuracy. 

3. INTERFACE-TRACKING SIMULATION 

As the fundamental check of the validity of the formulated manufactured solution, numerical simulations 
are performed with the authors’ simulation code in which a high-precision interface-tracking method 
(PLIC-VOF) is employed to simulate accurately the interfacial dynamic deformation. In addition, 
physically-appropriate formulations are employed in this code to calculate precisely the mechanical 
process at the gas-liquid interface, e.g. the surface tension effect. For the application to the gas 
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entrainment simulation in sodium-cooled fast reactors, the unstructured mesh scheme is necessary to 
model the complicated structural shape at the interface region in the reactors. Therefore, all of the 
simulation methods employed in the authors’ code are developed on arbitrary-shaped unstructured cells, 
e.g. triangle, tetrahedral or hexahedral cells. Some verification problems, e.g. the slotted-disk revolution 
problem, have been solved and the simulation results show the authors’ code provides superior simulation 
accuracy to conventional codes both on structured and unstructured meshes. 
 
3.1.  Simulation Condition 
 
The simulation domain is a cylindrical region with the height of 1.0 (+ 0.2 for gas region) and the radius 
of 1.0. As for the boundary conditions, the upper surface is treated as a pressure boundary and the 
manufactured solution (velocity components and pressure) is applied to the side and bottom boundary 
faces. In this paper, the initial phase of the verification process for the authors’ simulation code is 
conducted. In other words, the velocity components and pressure in the simulation domain are given as 
the manufactured solution values and only the interface-tracking simulation is performed. 
 
Two kinds of hexahedral simulation meshes with different mesh resolution are employed in this study. 
One is a relatively coarse mesh with the representative cell size ratio (h/R) of 0.1 (see Fig. 3) and the other 
mesh is constructed by subdividing all cells in the coarse mesh equally into eight cells (h/R = 0.05) (see 
Fig. 4). The simulation results obtained on those two meshes are compared each other to discuss about the 
simulation accuracy. 
 
Figures 5 and 6 show the velocity and pressure distributions with the interfacial shape in the vertical 
cross-section at the initial state. The uniform downward velocity is formed at the region below the 
interfacial dent. 
 
 

(a)   (b)  
Figure 3.  Simulation Mesh (h/R = 0.1): (a) Top View, (b) Bird’s Eye View. 

 
 

(a)   (b)  
Figure 4.  Simulation Mesh (h/R = 0.05): (a) Top View, (b) Bird’s Eye View. 
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Figure 5.  Velocity Distribution in Vertical Cross-Section. 

 
 

 
Figure 6.  Pressure Distribution in Vertical Cross-Section. 

 
 
3.2.  Simulation Results 
 
Figure 7 shows the simulation result of the interfacial shape deformation with the simulation mesh of h/R 
= 0.1. Due to the lack of enough mesh resolution, the interfacial radius is larger than the manufactured 
solution (Fig. 2) especially near the tip of the gas core. However, the interface contraction and resulting 
bubble formation is obtained even with such a coarse mesh. Figure 8 shows improved simulation results 
with enhanced mesh resolution compared with the results in Fig. 7. The simulated gas core radius is 
smaller in this case and the simulation result becomes closer to the manufactured solution. 
 
The numerical error is calculated to evaluate the simulation accuracy quantitatively. The definition of the 
numerical error at each elapsed time is as follows. 
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( is the interface radius evaluated at each cell. The subscripts calc, MS and ref indicate the calculated 
value, manufactured solution and reference value, respectively. Here, the interfacial radius at the origin of 
z coordinate is employed as (ref, i.e. (ref = 1.0. The summation is operated for all interfacial cells (n cells) 
and the superscript k indicates each interfacial cell. Equation (21) provides the L1 norm of the radial 
distance error between the calculated interface and the manufactured solution. The L1 norm is employed 
here to show the overall numerical error. As shown in Fig. 9, the numerical error increases rapidly at the 
initial stage until about t = 0.1tmax. Then, the numerical error shows almost a constant value after t = 
0.25tmax in the simulation result with the mesh of h/R = 0.1. In contrast, the numerical error increases 
gradually until t = 0.5tmax and then, decreases until the terminal state in the simulation result with the 
mesh of h/R = 0.05. The numerical error on the finer mesh is less than half of the error on the coarser 
mesh except for the short time period around t = 0.5tmax and the error ratio at the terminal state is about 
0.25. Therefore, the evaluation result of the numerical error implies the simulation accuracy of the 
interface-tracking method is first to second order. 
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(a)   (b)  

(c)   (d)  
Figure 7.  Interfacial Shape Deformation (h/R = 0.1): 

(a) t = 0.25tmax, (b) t = 0.5tmax, (c) t = 0.75tmax, (d) t = tmax. 
 
 

(a)   (b)  

(c)   (d)  
Figure 8.  Interfacial Shape Deformation (h/R = 0.05): 
(a) t = 0.25tmax, (b) t = 0.5tmax, (c) t = 0.75tmax, (d) t = tmax. 
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Figure 9.  Numerical Error in Interfacial Shape. 
 
 
4. CONCLUSIONS  
 
In this paper, the authors develop a new MS which models the simplified GE behavior in sodium-cooled 
fast reactors. Since the GE due to a hollow vortex is considered, the approximate solution of velocity 
components are determined to be similar to those in the Burgers vortex model. Moreover, the interfacial 
shape is formulated with a quartic equation which expresses the temporal growth in the interfacial dent 
and a gas bubble generation (pinch-off) at the terminal state. The numerical simulation with the authors’ 
high-precision method shows reasonable agreement with the MS in terms of the interfacial dynamic 
behavior including the bubble pinch-off. In addition, it is confirmed that the simulation accuracy is 
enhanced by increasing the mesh resolution. Therefore, the developed MS is considered as a good 
problem for the verification of an interface-tracking method. 
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