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ABSTRACT 
 
Recent neutronic/thermal-hydraulic (TH) coupled numerical simulations using full-core TRACE/PARCS 
and SIMULATE-3K BWR models have shown evidence of a specific “rotating mode” behavior (steady 
rotation of the symmetry line) in out-of-phase limit cycle oscillations, regardless of initial conditions and 
even if the first two azimuthal modes have different natural frequencies. The goal of the present work is 
to understand why the rotating mode is specifically preferred, and to determine under what conditions it 
might occur.  This was accomplished using a multi-channel, multi-modal reduced-order model, using a 
special modification of the fixed pressure drop boundary condition to destabilize the out-of-phase mode 
over the in-phase mode.  The four-channel model showed a clear preference for rotating mode behavior 
under standalone TH conditions and for conditions with weak neutronic feedback.  When neutronic 
feedback was strengthened, the side-to-side mode (stationary symmetry line) was favored instead.  A 
physical explanation has been put forth to explain why the rotating symmetry line behavior is preferred 
from a TH standpoint, demonstrating that the system is most unstable when the variation in the total inlet 
flow rate is minimized, and that the rotating mode is the most successful in minimizing this variation as 
compared to the side-to-side case or any other oscillation pattern. An explanation for why the neutronic 
channel coupling appears to favor a stationary symmetry line rather than a rotating symmetry line is left 
as a topic of future investigation. 
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1. INTRODUCTION 
 
Out-of-phase oscillations in boiling water reactors (BWRs) can be examined as a superposition of the first 
two azimuthal modes of the static neutron flux.  A “side-to-side” out-of-phase behavior (stationary 
symmetry line) can occur when the azimuthal modes oscillate with the same phase shift; a “rotating” out-
of-phase behavior (steady rotation of the symmetry line) occurs when the phase shift between modes is 

 [1] [2].  Typically, it has been assumed that the phase shift between modes is arbitrary, depending 
only on initial conditions and the natural frequencies of each azimuthal mode separately; however, a 
recent study by Wysocki et al. [3] using the TRACE/PARCS coupled code system, and an additional 
study by Dokhane et al. [4] using the SIMULATE-3K code, found a specific tendency towards the 
rotating pattern under asymptotic limit cycle conditions for at least some out-of-phase full-core simulation 
conditions.  The phase shift between modes remained at roughly  in the limit cycle even though the 
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natural frequency of each azimuthal mode differed; this suggested a nonlinear coupling mechanism 
between modes promoting the specific  (rotating) behavior.   
 
The primary focus of the current study is to provide a physical explanation for why the rotating mode 
limit cycle behavior might be favored over the side-to-side mode, and under what conditions this is true.  
To that end, the scope has been narrowed to smaller “N-channel” models including either  or  
channels, rather than a full-core model.  Primarily, the four-channel model will be used, as this gives the 
fewest number of channels while still allowing for two separate azimuthal modes (in the coupled case).  
In addition, a reduced-order model (ROM) is used, which provides a variety of advantages in simplifying 
the analysis and allowing for ease of physical insights.  From this simplified model, insights have been 
gained into the physical causes for the oscillatory behavior, e.g. rotating versus side-to-side, and these 
insights may be easily extended for an understanding of the full-core results shown in the previous works. 
 
A secondary aim of the current study is to present a new approach for boundary condition treatment in 
multi-channel systems which, to the author’s knowledge, has not been done previously in quite the same 
way.  This approach freely allows the user to control the preferred oscillation type (in-phase versus out-
of-phase) by simple adjustment of inlet and outlet plena loss factors, while maintaining consistency across 
cases for clear comparison if done properly. 
 
Previous authors have examined, both experimentally and theoretically, the behavior of systems of  
identical TH channels connected in parallel via common inlet and outlet plena, in particular when the total 
flow rate among channels is held constant.  For , only the ) pattern is possible (i.e. phase 
shift of  between the individual channel oscillations).  For , Nakanishi [5] reported 
experimental results in which two pairs of channels form, with the two channels of each pair oscillating 
counter-phase to each other but with an arbitrary phase shift for one pair relative to the other.  This can be 
expressed as , where  is the arbitrary phase shift between the two pairs. 
 
This is sufficient to ensure that the total flow rate remains constant in the linear case (i.e. perfectly 
sinusoidal oscillations); however, the authors could find no examples in which the nonlinear oscillation 
case (i.e. oscillations with additional Fourier frequency components) was analyzed, either theoretically or 
for large-amplitude TH oscillations.  As will be shown in this paper, the additional nonlinear terms make 
a difference in how well the variation in total flow rate is minimized in the rotating mode case versus the 
side-to-side mode case; this fact, as will be argued in this paper, leads to a condition in which the rotating 
mode is specifically favored over the side-to-side mode, with both numerical results and physical 
explanations provided to support the claim. 
 
2. METHODOLOGY 

2.1.  Reduced-Order Model 
 
The ROM used in the present study was introduced by Karve et al. [6], and was selected here as being 
perhaps the simplest model available which still includes all the elements needed for this study.  The 
original model described consists of a single thermal-hydraulic channel with fuel temperature and coolant 
density feedback provided via a point kinetics model for neutronics.  A description of the phase variables 
solved for in the present study is given in Table I; these are identical to the phase variables in the original 
model except that the model has been extended to allow for multiple thermal hydraulic channels in 
parallel, connected via common inlet and outlet plena.  In addition, an option has been added to employ 
higher-order modal kinetics, up to the first three neutronic modes (i.e. the fundamental and first two 
azimuthal neutronic modes). 
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Table I.  Description of phase variables solved for in the model as implemented in the current work 
 

Variable Description 
 Axial location of boiling boundary for channel  
 Slope of quality in two-phase region for channel  
 Inlet velocity for channel  

 th expansion coefficient for fuel temperature in single-
phase region for channel  

 th expansion coefficient for fuel temperature in two-
phase region for channel  

 Neutron density for neutronic mode  
 Neutron precursor concentration for neutronic mode  

 
To accomplish these changes, the equations and phase variables governing thermal hydraulics and fuel 
heat conduction were trivially extended to  channels, with each channel  being solved independently in 
complete analogy to the original single-channel treatment, with two exceptions: the conduction solution 
was reduced to a single-region problem (in the radial direction) for simplicity, and the inlet and outlet k-
factor treatment was altered in a way that was unique to the multi-channel system, as discussed in the next 
section.  In addition, the neutron kinetics treatment was extended from simple point kinetics to 
multimodal kinetics, allowing for any number of neutronic modes  as specified by the user. 
 
The resulting system consists of ( ) nonlinear ODEs, with phase variables given in Table I, 
which were solved using MATLAB’s built-in ode23 function, a one-step second-order Runge Kutta 
method.  One additional detail to note in the current implementation was the use of a simple limiter which 
set any negative values for the phase variables to zero at each solution step, preventing negative solutions 
which (due to the assumptions inherent in the equations) led to runaway divergence of the solution to 
infinity in either direction.  This proved necessary for the problems shown in this study, as the limit 
cycles often had large enough amplitudes to give negative velocities during a portion of the oscillation 
period. 
 
The reader is referred to the original paper by Karve et al. [6] for a detailed description of the underlying 
fluid and fuel heat conduction equations.  For the multi-modal kinetics equations, the reader is referred to 
other sources, such as Dokhane [7], from which the current implementation was directly adapted. 

2.2  Boundary Condition Treatment and Inlet Plenum Loss Factors 
 
The behavior of a system of parallel flow channels undergoing oscillations (most commonly, density-
wave oscillations) has been the topic of numerous studies, both experimental and analytical.  Boundary 
conditions play an important role in determining the stability characteristics, e.g. whether the in-phase or 
out-of-phase oscillation mode dominates.  For the case of in-phase oscillations, the recirculation loop 
dynamics play a role, and the boundary conditions may reflect this in terms of additional pressure drop 
terms or other treatment.  However, for the case of out-of-phase oscillations, Grandi et al. [8] have shown 
that recirculation loop dynamics play virtually no role at all, and the results are almost identical if one 
eliminates the recirculation loop dynamics from the model and imposes a constant total core inlet flow 
rate and a constant core pressure drop boundary condition instead. 
 
More recently, Munoz-Cobo et al. [8] have argued that a constant pressure drop boundary condition 
should not be imposed along with a constant total mass flow rate condition, as this leads to an 
overdetermined system of equations and artificially inhibits the variations in total inlet flow rate.  
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Alternately, Dokhane [7] was able to impose a fixed pressure drop boundary condition and still obtain in-
phase oscillations, provided that the oscillations remained small in amplitude (1%). 
 
As will be demonstrated in the Results section, applying a fixed pressure drop boundary condition from 
only the inlet to the outlet of each channel prevents any coupling between channels, at least when 
neutronics are disabled.  In a real BWR, though, the channels are coupled thermal-hydraulically through 
the inlet and outlet plena, which has a flow rate equal to the sum of the flow rates in all channels at the 
channel inlet and outlet, respectively.  By including a pressure drop term which operates on the total core 
flow rate, a mechanism is created by which the channels may be coupled to each other.  The effects of this 
extra loss term on the stability characteristics of the system, and the physical reason why it promotes 
either out-of-phase or in-phase behavior (depending on the values chosen), will be described in detail in 
the Results section. 
 
In the present work, the pressure loss for the inlet plenum is termed  and is applied as a 
concentrated pressure loss with a local loss factor  as given by 

  (1) 

where  is the single-phase liquid density, and  is the time-dependent average inlet velocity 
given by 

  (2) 

where  is the total number of channels and  is the inlet velocity for channel .  Likewise, an 
additional term  can be derived based on the average outlet velocity across all channels, 
properly weighted by channel outlet densities (based on void fraction).  This has been done in a more 
thorough work by Wysocki [9]; however, such an analysis is omitted in the present work, for brevity. 
 
Note that a separate loss term  is still included in the model (as originally implemented by 
Karve et al.), and operates on the inlet velocity of each channel separately.  Namely, 

  (3) 

Therefore, for example, if one wishes to increase  from its default value of  to some 
positive value, one may also decrease  by the same amount in order to maintain precisely the 
same overall  throughout the model, thus maintaining the same steady-state conditions as well.  This 
is an attractive feature which allows for true “apples-to-apples” comparison between cases. 
 
All calculations performed in this paper were done with MATLAB, including use of the MATLAB 
Symbolic Toolbox for calculation of eigenvalues and eigenvectors for the linearized system (i.e. the 
Jacobian) around the steady-state values for the original system of nonlinear ODEs.  This was used to 
provide further insights into the results. 
 
3. RESULTS 

3.1.  Initial Coupled Results 
 
Table II shows the steady-state values calculated for the single-channel model, named Case C-1A, with 

 and .  These values correspond exactly to the values calculated by Karve et al. [6] 
for the same conditions.  The leading eigenvalue for this case was found to belong to the complex pair 
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, which in the time domain corresponds to a growing exponential based on the real part 
multiplied by a sinusoidal oscillation with frequency based on the complex part. 
 

Table II. Steady-state values for all phase variables in all channels, across all cases shown in this 
paper, for  

 

Variable 
Steady-

state value 
 0.231 
 0.350 
 0.878 
 1.69 
 2957 

 
However, initially, standalone TH cases were desired; to accomplish this, all parameters were kept the 
same (including ) except that the feedback reactivity coefficients  and  in the model (corresponding 
to void and fuel temperature feedback, respectively) were reduced from their original values of  and 

, respectively (in nondimensional terms), to .  Thus, changes in void fraction 
and fuel temperature have no effect on the reactivity terms, so that the power levels (and therefore the 
heat reaching the coolant) remain constant, acting as a fixed-heat-flux boundary condition typical of 
standalone TH problems. 
 
This, however, decreased the oscillatory eigenvalue pair from  to , 
bringing the operating point far within the stable region, due to the loss of the neutronic feedback which 
has a destabilizing effect.  To compensate, the values of  and  in the TH momentum equation 
were adjusted to bring the standalone TH case back to slightly unstable conditions.  In the original model 
by Karve et al., values of  and  were given; for standalone TH cases in the 
current study, values of  and  were chosen instead.  The methodology for 
choosing this values was based on maintaining the same  across the model while also giving the 
desired real eigenvalue component; further details are given in a separate work [9]. 

3.2.  Standalone TH Results 

3.2.1.  Two-channel cases 
 
Two different two-channel standalone TH cases were run: Case S-2A, using values of  and 

, and Case S-2B, using values of , and .  Eigenvalues are shown in 
Table III.  Note that each eigenvalue (or complex eigenvalue pair) is repeated, occurring once per 
channel, with each eigenvalue matching those for a separate single-channel case that was also performed 
(not shown here).  Time-dependent channel inlet velocity values as well as the phase shift between the 
velocity oscillations in each channel are shown in Figure 1 and Figure 2.  To find the phase shift values, a 
subroutine was used which finds all points for each channel velocity signal where the velocity crosses 
from below the steady state value to above that value (linearly interpolating the nearest two time points in 
the signal), then comparing that “crossover point” to the most recent crossover point for Channel 1, 
finding the time difference as a fraction of the total oscillation period then multiplying by 360 degrees to 
find the phase shift value at that point in time.  All such phase shift values were then plotted consecutively 
as a single timeseries with phase shift on the y-axis. 
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Table III. Eigenvalues and corresponding oscillation types for the two-channel standalone TH case 
with  and  (Case S-2A), or with  and  (Case S-2B) 
 

Case S-2A Case S-2B 
Eigenvalue Oscillation Type Eigenvalue Oscillation Type 

0.330+8.277i Arbitrary 0.843-8.290i Out-of-phase 
0.330+8.277i Arbitrary 0.843+8.290i Out-of-phase 
0.330-8.277i Arbitrary 0.330+8.277i In-phase 
0.330-8.277i Arbitrary 0.330-8.277i In-phase 

0.000 - 0.000 - 
0.000 - 0.000 - 
-0.300 - -0.300 - 
-0.300 - -0.300 - 
-0.315 - -0.315 - 
-0.315 - -0.315 - 

-47.211 - -44.772 - 
-47.211 - -47.211 - 
-199.889 - -199.889 - 
-199.889 - -199.889 - 

 
 

 

 
Figure 1.  Inlet velocity  for each channel  (top) and evolution over time of the phase shift of 
each channel relative to Channel 1 (bottom), for the two-channel standalone TH case with 

 and  (Case S-2A). 
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The final (asymptotic) phase shift between channels shown in Figure 1 is arbitrary; different cases were 
also performed with different initial conditions, leading to different final phase shift values.  This is 
because the fixed  boundary condition is applied to each channel separately, with all  terms 
operating on individual channel parameters only.  Likewise, in Table III the first two eigenvalue pairs of 

 are degenerate, meaning that they have the same eigenvalues and the eigenvectors can 
occur in any point in the corresponding two-dimensional vector space and need not be orthogonal; i.e. 
they correspond neither to out-of-phase nor in-phase oscillations per se, but rather can be chosen 
arbitrarily (in terms of phase shift between channels). 
 

 

 
Figure 2.  .  Inlet velocity  for each channel  (top) and evolution over time of the phase shift of 
each channel relative to Channel 1 (bottom), for the two-channel standalone TH case with 

 and  (Case S-2B). 
 
In order to obtain a distinct in-phase or out-of-phase characteristic behavior, the  term must be 
nonzero in this implementation.  This is seen in Case S-2B (Figure 2), which shows a clear evolution 
towards out-of-phase oscillation (i.e.  phase shift between channels), regardless of initial conditions.  
This is represented also in Table III, which indicates that one complex eigenvalue pair still exists at the 
same value of , but now the other pair exists at  instead.  Inspection of the 
corresponding eigenvector reveals that this corresponds to an out-of-phase oscillation case (  phase 
shift between channels), while the  now corresponds specifically to in-phase oscillations 
(  phase shift). 
 
The physical reason for this behavior in Case S-2B is as follows.  In the in-phase oscillation case, the 
average inlet velocity (  in Eq. (1)) oscillates identically to  and  (the individual 
channel velocities).  Thus, the in-phase oscillation mode exhibits the exact same behavior as if two 
channels were independent (as in Case S-2A) or as in a corresponding single-channel case if it were 
performed instead.  However, in the out-of-phase oscillation case,  no longer oscillates the 
same as  and ; in fact,  is constant in time since the oscillation in channel 1 cancels 
out the oscillation in channel 2, at least for linear oscillations (for nonlinear oscillations with additional 

�

0 5 10 15
0

0.5

1

1.5

2

2.5

Time (s)

v(
t)

 

 
Chan 1
Chan 2

0 10 20 30 40 50 60 70 80 90 100

0

50

100

150

200

250

300

350

Time (s)

P
h

as
e 

sh
ift

 (d
eg

re
es

)

 

 
Chan 1
Chan 2

4790NURETH-16, Chicago, IL, August 30-September 4, 2015 4790NURETH-16, Chicago, IL, August 30-September 4, 2015



Fourier frequency components, the average flow cannot in general be strictly constant).  This means that 
 remains constant in time, meaning that each channel is effectively oscillating at a reduced 

total  (since the contribution normally associated with  no longer “participates” in the 
oscillations). 
 
More specifically, the effective pressure drop in the single-phase region is reduced (in terms of what 
oscillates), meaning that the effective two-phase to single-phase pressure drop ratio is increased.  This, as 
is well known in the study of density-wave oscillations, has a destabilizing effect on the system, 
accounting for the increased real eigenvalue component of the out-of-phase mode shown in Table III. 
 
It is significant to note that additional cases were performed by Wysocki [9], finding that the addition of 
an outlet plenum loss factor  had the opposite effect, promoting the in-phase mode over the out-of-
phase mode, for the reverse reasoning as given above1. 

3.2.2.  Four-channel cases 
 
A four-channel case S-4B, in complete analogy to case S-2B, was performed, with  and 

.  The eigenvalues (and eigenvectors) were simply repeats of the two-channel values, except 
with four complex pairs, one of which was the in-phase  pair and the other three of which 
were out-of-phase  pairs.  This is expected, as there were now additional “degrees of 
freedom” in which the channels could oscillate out-of-phase in different combinations and still maintain a 
constant total inlet velocity (at least for the case of linear oscillations). 
 

 

 
Figure 3.  Inlet velocity  for each channel  (top) and evolution over time of the phase shift of 

each channel relative to Channel 1 (bottom), for the four-channel standalone TH case with 
 and  (Case S-4B). 

                                                      
1 Furthermore, a negative value of  (or negative ) promoted the in-phase mode (or out-of-phase mode, 
respectively) as well, although the use of negative loss factors was purely academic and not physical. 
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Results of the numerical simulation are shown in Figure 3.  As discussed in the Introduction, in the four-
channel case the tendency is to form two pairs of counter-oscillating channels, with some (supposedly) 
arbitrary phase shift  between the two pairs of channels.  This is shown in the figure, in which Channels 
1 and 4 quickly form into a  pair, and Channels 2 and 3 forming a separate  pair, starting from 
10 seconds into the simulation and continuing indefinitely.  However, the key finding is that the value of 

 gradually moves towards  and remains there asymptotically; in other words, the four-channel 
model specifically favors the  oscillation pattern (to an arbitrary number of decimal 
places over time).  This oscillation pattern naturally corresponds to a “rotating mode” behavior, except 
that the actual ordering of the channels is arbitrary for the standalone TH case.  For the coupled case, the 
ordering is no longer arbitrary, and the behavior even more closely resembles that of the full-core rotating 
mode system, as will be shown in the next section. 

 
One now wishes to understand why the  behavior (i.e. “rotating mode”) is favored, as opposed to 

 (“side-to-side mode”) or other patterns, for its significance on possible full-core BWR out-of-
phase behavior.  In fact, the reason for the rotating mode behavior can be understood by considering the 
average (or total) inlet flow rate among channels.  Recall from the previous study on Case S-2B that a 
standalone TH system with a positive value for will have an out-of-phase mode as the dominant 
oscillation mode , since the effective two-phase to single-phase pressure drop ratio is maximized when 
the average inlet flow rate is as close to constant as possible. 
 
As discussed in the Introduction, the two pairs of counter-oscillating channels are sufficient to ensure a  
constant total flow rate in the linear oscillation case; however, especially for limit cycles, higher-
frequency Fourier components exist in the velocity time signal, and this means that the average flow rate 
cannot be strictly constant regardless of phase shifts between channels.   
 
In fact, the rotating mode is the specific pattern that is best at eliminating these higher frequency 
components from the average velocity signal.  This will be shown by decomposing a representative inlet 
velocity signal from a particular channel during the limit cycle for Case S-4B; the original signal and the 
amplitude of each Fourier mode are shown in Figure 4.  These were calculated using the eight-order 
Fourier expansion given by 

  (4) 

where  is the original time signal and , , and  are fitting parameters.  The overall mode 
amplitude of each mode , as given in Figure 4, is defined as  

  (5) 

 
Now the task is to analyze the average velocity signal when multiple identical channel signals are 
combined with various phase shifts.  To do this, define 

  (6) 

                                                      
2 Alternatively,  could be positive but sufficiently smaller than .  However, we will restrict our 
consideration the the case of  for the present discussion, for simplicity, as both cases yield the same 
conclusion. 
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where  is the average inlet velocity and  is the number of channels.  First, consider the case of two 
identical channels with an arbitrary phase shift  between the channels.  Using the expression for  
in Eq. (4) with a frequency of , the expression for  is then simply 

  (7) 

which can be substituted into Eq. (4) to find an explicit expression for  in terms of a summation of 
sine and cosine functions and the unknown quantity .  Plugging the expressions for  and  into 
Eq. (6), one finds that the average flow rate between the two channels is given by 

  (8) 

 

 
Figure 4.  Inlet velocity signal for Channel 1 during the limit cycle for Case S-2B, along with the 8th-

order Fourier curve fit (top), and the amplitude of each frequency mode in this Fourier curve fit 
(bottom). 

 
The case of  corresponds to an in-phase oscillation between the two channels, while  
corresponds to out-of-phase oscillations.  Note by inspection that the out-of-phase case cancels out all odd 

 components in , while having no effect on the even  components (i.e. returning the same values 
from the original single-channel case).  Therefore, all components in the out-of-phase case are less than or 
equal to those in the in-phase case in magnitude, and so the resulting function  will experience 
smaller oscillations in the out-of-phase case.  Most importantly, the large  component in the original 
signal (Figure 4) is eliminated entirely, which is the most important reason why the out-of-phase mode 
helps minimize the variation in the total flow rate. 
 
For completeness, the degree of variation in the average inlet velocity signal (which one is attempting to 
minimize) will be quantified using three different norms: the -norm, -norm, and -norm of 

, over a single oscillation period, where  is the steady-state average flow rate (equal to  in the 
Fourier expansion).  These norms are defined as 
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(9) 

where  is the -norm of , and  is a single oscillation period.  The values 
of these norms, as a function of , are shown in Figure 5.  It is clear that  minimizes the 
variation in the average flow rate, hence is the most unstable configuration for the nonlinear oscillations 
of Case S-2B. 
 

 
Figure 5.  -norms of the variation in average flow rate as a function of  over the range 

 for the two-channel case 
 
The analysis will now be extended to the four-channel case, using  as given above as well as 

  (10) 

  (11) 

and 

  (12) 

This assumes that , as concluded above for the most unstable case, and leaves  as a free 
variable.  This corresponds to the two pairs of counter-oscillating channels as described earlier. 
 
The same analysis now yields 

 
 

(13) 

By inspection, all odd modes are automatically zero, but also every  mode is also zero 
when .  This case, corresponding to the “rotating mode” with channel phase shifts of 

, results in the least possible variation in average flow rate, in terms of the -norms 
shown in Figure 6. 
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It is expected, furthermore, that the rotating mode will minimize the variation in average flow rate (hence 
will be the most unstable mode) for any realistic limit cycle case (not just for the time signal analyzed 
here), due to most realistic oscillation patterns being dominated by the first three Fourier mode 
components ( ), all of which are eliminated completely by the rotating mode, leaving only the 

 mode and higher multiples of . 

 
Figure 6.  -norms of the variation in average flow rate as a function of  over the range  

for the four-channel case, assuming  

3.2.  Coupled Results 
This section describes results for the coupled neutronic-TH cases, in which the reactivity coefficients  
and  were increased from  (standalone TH) to some fraction of their nominal values.  First, with 

, the  and  values were returned to their nominal values of  and , 
respectively; then,  was increased until the out-of-phase modes had a real component of  
(chosen arbitrarily, to yield sufficiently unstable results for quicker limit cycle evolution).  Additional 
cases, shown in Table IV, were performed by incrementally decreasing  from this value, increasing 

 and  by the same fraction of their nominal amounts in order to maintain the same real component of 
 in the out-of-phase mode. 

 
Table IV. Final limit cycle phase shift depending on the relative strength of neutronic versus TH 

channel coupling. 
 

      Final Limit Cycle Phase Shift (degrees) 
Case   Multiplier Chan. 1 Chan. 2 Chan. 3 Chan. 4 
C-4A 11.000 0.388 0.0 0.0 180.0 180.0 
C-4B 11.500 0.336 0.0 0.0 180.0 180.0 
C-4C 11.750 0.310 0.0 0.0 180.0 180.0 
C-4D 11.875 0.297 0.0 329.6 149.6 180.0 
C-4E 12.000 0.284 0.0 318.1 138.1 180.0 
C-4F 12.125 0.271 0.0 305.8 125.8 180.0 
C-4G 12.250 0.258 0.0 270.0 90.0 180.0 
C-4H 12.500 0.231 0.0 270.0 90.0 180.0 
C-4I 13.000 0.177 0.0 270.0 90.0 180.0 
C-4J 13.500 0.121 0.0 270.0 90.0 180.0 
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* The real component of the out-of-phase eigenvalue pair was 1.00000 in each case, the value of  
was set to  in each case to maintain a constant total , and the steady-state solution was 

the same across all cases (as given in Table II). 
 

Thus, a series of cases was created which had a progressively stronger neutronic coupling between 
channels (via  and ) and a progressively weaker TH coupling between channels (via ).  Results 
for the final limit cycle phase shift pattern for each case are shown in Table IV as well, with the phase 
shift plot examined visually in each case to ensure convergence (or run for a longer time if not).  Phase 
shift as a function of time are shown in Figure 7 as well, for three select cases. 
 

 
Figure 7.  Evolution over time of the phase shift of each channel relative to Channel 1, for the 

coupled four-channel cases C-4G (top), C-4E (middle), and C-4C (bottom). 
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The results show the following clear trend: cases with relatively stronger TH channel coupling favor the 
rotating mode behavior, while cases with relatively stronger neutronic channel coupling favor the side-to-
side mode.  An interesting “transition region” also exists in this model, in which the final, converged limit 
cycle behavior is established at some intermediate phase shift somewhere between rotating and side-to-
side. 
 
4. CONCLUSIONS  
 
The current study has proven successful in demonstrating a preferred “rotating mode” behavior using a 
reduced-order model with four TH channels connected by a common inlet plenum.  Furthermore, a 
physical explanation has been established for why this mode is preferred for nonlinear limit cycle 
oscillations, drawing upon the conclusion that the rotating mode minimizes the variation in the average 
(or total) inlet flow rate, hence yields the most unstable oscillation pattern when an inlet plenum loss 
factor is included in the model. 
 
However, for coupled calculations with multimodal neutronic feedback, it was found that the neutronic 
coupling favors the side-to-side oscillation mode, as opposed to the TH channel coupling which was 
found to always favor the rotating mode; the relative strength of these respective coupling mechanisms, 
adjusted via input parameters, determined which mode was the overall preferred mode.  A physical 
explanation for why the neutronic coupling appears to favor the side-to-side mode specifically, is left as a 
topic of further investigation. 
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