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ABSTRACT

Multiphase computational fluid dynamics (MCFD) simulation based on the two-fluid model has emerged 
as a valuable tool for reactor thermal-hydraulics design and safety analysis. The classical two-field, two-
fluid model treats each phase as a whole, which introduces considerable uncertainties when a phase is 
comprised of significantly different forms, e.g., liquid droplets and liquid film. This uncertainty becomes 
particularly important for resolving the multi-dimensional distribution of different fields in CFD 
applications. In relation to this, a multi-field model is necessary to mechanistically model a wide range of 
two-phase flow regimes. In this paper, we first derive a generic and rigorous multi-field two-fluid 
framework based on the local instant formulation of the mass, momentum and energy conservation 
equations for single phase fluids. An averaging operator is introduced to make the derivation more 
general than previous studies based on a specific time-, area-, volume-, or ensemble-averaging method. 
The averaged field conservation equations and interfacial jump conditions are obtained from the local 
instantaneous formulation through a derivation with minimal assumptions. Based on this framework, a 
six-field two-fluid model is proposed as a practical model for the entire spectrum of the two-phase flow 
regimes spanning from bubbly to annular. These six fields include: continuous liquid, two dispersed 
liquid fields, continuous gas, and two dispersed gas fields.  The relationship between the momentum 
transfer terms in the Eulerian two-fluid model and the particle forces have been established by 
introducing a statistical averaging and the equation of motion for a single particle. Based on this analysis, 
the Ishii and Mishima [1] formulation for the interfacial momentum transfer terms is adopted in the 
current six-field two-fluid model.
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1. INTRODUCTION

The two-phase flows found in industrial applications often exhibit very complex flow structures, in which 
a large number of bubbles, droplets, films, and other flow structures undergo rapid interactions and 
topological changes.  Even with ever increasing computing power, it is not feasible in the near-future to 
simulate these two-phase flow problems by directly solving the local instant formulations (or the so-called 
one fluid model [2]) which intends to resolve all the interfaces. Therefore, a proper averaging should be 
taken over a two-phase flow field to eliminate the unresolved high frequency signals, and hence to
significantly reduce the computational cost.  When averaging is taken over each phase in a gas-liquid 
two-phase flow, one obtains the “two-fluid model,” in which the conservation equations are written for 
gas and liquid separately. Ishii [3] was among the first who rigorously derived the two-fluid model from 
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the fundamental single phase flow formulation based on time-averaging.  Other averaging methods such 
as space averaging, including area and volume averaging [4], and ensemble averaging [5] were also used 
to derive the two-fluid model in the literature.  The two-fluid model originally consisted of one set of 
mass, momentum and energy equations for each phase.  Therefore, the model does not differentiate 
interfacial structure forms within each phase such that continuous and dispersed gases (or liquids) are 
considered as a single fluid field.  Continuous and dispersed gases (and liquids) have quite different 
hydrodynamic behavior in a two-phase system, and their importance in terms of heat transfer is also 
different.  For example, it is the film flow rate rather than the total liquid flow rate (which also includes 
the droplet flow rate) that determines the occurrence of film dryout, and hence the peak cladding 
temperature, of a nuclear fuel rod.  It is necessary to divide gas and liquid phases into multiple fields and 
solve separate field equations to achieve better predictions.  

Among the different approaches, the four-field two-fluid model proposed by Lahey and Drew [6] is 
considered generic and covers all the flow regimes from bubbly to annular flow.  However, the four-field 
model treats all the bubbles of different sizes as a single field, which does not reflect the fact that small 
and large bubbles behave differently in terms of drag, lift, and bubble interaction mechanisms.  For 
example, the lift force changes its direction when a bubble size exceeds a certain limit.  This difference is 
important for a 3-D prediction since it determines whether a wall-peak or a center-peak void profile exists 
in the flow.  In relation to this, a two-group interfacial area transport equation (IATE) approach has been
developed by Ishii [7] to model small (group-1) and large bubbles (group-2) separately.  This treatment 
requires the modification of the classical two-fluid model.  In this regard, Sun [8] proposed a three-field 
two-fluid model (also called two-group two-fluid model, as there are two bubble groups).  Sun presented 
the separate conservation equations for group-1 and group-2 bubbles, and the liquid phase.  They also 
proposed a combined gas momentum equation to simplify the system and reduce the computational cost.  
The combined momentum equation approach in a CFD code was also investigated by Lee et al. [19].  The 
two-group two-fluid model is applicable to bubbly, cap-bubbly, cap-turbulent and churn-turbulent flow 
regimes.  Neither the four-field model nor the two-group two-fluid model was derived from the 
fundamental conservation equations of single phase fluids.  Therefore, the completeness and the accuracy 
of the field equations cannot be verified. Morel [9] re-examined the four-field two-fluid model by 
introducing two types of indicator functions, one for different phases, and the other one for different 
regions, namely, the continuous gas and the continuous liquid region.  He was able to derive the four-field 
two-fluid model from the local instant balance equation of single phase fluids.  However, Morel’s
derivation was specifically for stratified flow regime in horizontal flows.  It cannot be applied to flows 
with both groups of bubbles, or flows with more than four fields.

In relation to the above, this paper focuses on the development of a generic multi-field two-fluid model 
for mechanical and thermal non-equilibrium two-phase flows.  This will become the foundation of any 
specific multi-field two-fluid model for a particular flow regime.  More importantly, combining with the 
interfacial area transport equation, a unified two-fluid model framework can be established.  Within this 
framework, flow regime transitions are predicted based on physical models rather than empirical 
transition criteria, thus preserving the dynamics of two-phase structure and eliminating possible numerical 
issues.  

2. DERIVATION OF A GENERIC MULTI-FIELD TWO-FLUID MODEL 

In this section, a detailed derivation of a generic multi-field two-fluid model framework is presented.  
Similar to the derivation of the classical two-fluid model, it is assumed that the general conservation 
principles for mass, momentum, and energy, apply to any point in the flow domain at any given time.  For 
the two-phase flow of interest, two important assumptions are also made here. First, the interface is 
sufficiently smooth and has a zero thickness.  Therefore, the derivation is only applicable to immiscible 
fluids, which are of primary concern in this work.  Second, two fields of the same phase do not have 
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continuous direct contact over a time-averaged relevant time scale.  This assumption is made to simplify 
the classification of different fields within the same phase.  If a connected object has to be divided into 
two different fields, it makes the demarcation extremely difficult both numerically and experimentally 
because of the complex two-phase flow interfacial structures.  Two fields of the same phase may interact 
in a near instantaneous manner (i.e., a group-1 and group-2 bubble coalescing into a group-2 bubble).

In a multi-field two-fluid model, two fundamental discontinuities appear: 1) the discontinuity due to a 
physical parameter change across the interface, and, 2) the discontinuity due to the sudden change of the 
field.  In the second case, the discontinuity is artificially created due to the classification of flow fields.  
The “sharp interface” and “sudden field change” concept may not be desirable for direct numerical 
simulations.  However, these discontinuities in the local instant formulation will be eliminated through 
certain averaging processes.  The resultant two-fluid model is based on the averaged flow parameters 
which are smooth and quantifiable in nature.  The practical engineering application, based on the two-
fluid model, will not see these discontinuities caused by either interface or inter-field changes.  As 
discontinuities and Dirac delta functions appear in the derivation, the functions appearing in the local 
instant formulations should be considered as generalized functions (or distributions). The following 
convention is adopted for a better representation of the parameters in a multi-field two-phase flow.

1. For phase k, there are Nk fields in total.  Similarly, Nl denotes the total number of fields in phase l.
2. For a variable kjf , subscript kj means phase k, field j. k=g for gas, f for liquid.  j=0 for the 

continuous field, 1, 2,… Nk -1 for dispersed fields.  
3. A subscript i in quantity if means an interfacial quantity.

4. The subscript kj lm� in quantity ,i kj lmf � represents the interface between fields kj and lm.

5. The subscript kj lm� in quantity ,i kj lmf � means a transfer from field kj to lm.

6. The under right arrow, e.g., v� , indicates a vector. The double under-bar, e.g, � , represents a tensor.

2.1. Local Instant Parameters
For a multi-field two-phase flow, one can define the level set representation of field kj as [3] :

� �
0,    inside field 

,   0,    at the interface

0,    outside field 
kj

kj

f x t

kj

��
	
�
	�


� (1)

For multi-particle systems, one may define fkj for the surface of each particle.  A new function obtained 
from the product of all those fkj’s has the same properties as those shown in Eq. (1).  Therefore, function 
fkj appeared in the following discussions may represent either a single or multiple interfaces. The phase 
indicator function k� can be extended to the field indicator function as:

� � � �� � � �
f

1,    ,   occupied by field 
, ,

0,    otherwise
kj kj

x t kj
x t H f x t�

�

 
 �




�
� � (2)

where fH is the Heaviside function. Each field indicator function is defined over the entire spatial and 

temporal domain 3:{ ,  }T t x R� � � � � � � �
� .  The local instant interfacial area concentration for field kj

can be written as:

� �,  .i kj kj kj kja f f� �
 � 
 � (3)

Here � is the Dirac delta function.  For multi-field two-phase flows, it is proper to further divide the 
interfacial area into several interface pairs:
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,
,

,      at the interface between fields  and

0,         otherwise
i kj

i kj lm

a kj lm
a �

�

 �



(4)

Here subscript kj lm� represents the interface between fields kj and lm.  The total interfacial area 
surrounding field kj can be given as:

, ,

0,... 1

 .

l

i kj i kj lm
l k
m N

a a �
�

 �


 � (5)

2.2 Filter Function, Convolution and Averaging
Averaging a two-phase flow is a low pass filtering process to eliminate unwanted high frequency signals 
from local instant fluctuations of variables [1].  In the present study, an averaging concept based on filter 
functions [10] is utilized to ensure the generality of the derived two-fluid model.  In other words, the 
derivation can be applied to time-averaging, area-averaging, volume-averaging, or any combination using 
these averages. A filter function (or a kernel function) � �,G x t� is defined on the time-spatial domain 

3:{ ,  }T t x R� � � � � � � �
� with a compact support.  Averaging can be realized by taking the convolution 

of a field parameter � �,f x t� and a filter function given by the following expression:

� � � � � � � � � �, , * , ', ' ', - ' ' ' ' ' .A A A

T

f x t G x t f x t G x t f x x t t dx dy dz dt
��


 
 ��� � � � � (6)

Here, the over bar indicates an averaged value.  Superscript ‘A’ means averaging method, it could be ‘T’, 
‘V’ and ‘S’ representing time, volume and area averaging, respectively. For time-averaging, the filter 
function is defined as:

� � � �1
,    t / 2

,
0,                 t / 2

T
x T

TG x t
T

�� � �	�
 �
	 � �


�
� (7)

By the definition given in Eq. (6), the time-averaged value for a field quantity f is:

� � � � � � � �
/2

/2

1
, ', ' ', ' ' ' ' ' , ' '

t TT

t T
T

f x t G x t f x x t t dx dy dz dt f x t dt
T

��

��
��


 � � 

�� �� � � � � . (8)

This is identical to the definition given by Ishii [3].  Essentially, by introducing the Dirac delta function in 
the kernel, the averaging is frozen at the given point.  The examples and filter functions can also be given 
for line-, area-, and volume-averaging, and any combination of those operations in a similar way [10].
The convolution has the following properties which can be carried forward to the averaging operator:

� �
� �

� �

1 2 1 2

,

,

,

.

G f f G

G af bf aG f bG f

G f f
G

t t
G f G f

� 
 �

� � 
 � � �

� � �

 �

� �
� � 
 ��

(9)

In the current averaging scheme, the integral is taken over the entire spatial and temporal domain
3:{ ,  }T t x R� � � � � � � �

� , and the field quantity f is well defined over this domain. The averaging 
operator commutes with time and spatial derivatives. This is different from the Ishii approach [3], in 
which the integration range contains several discrete time intervals and they are dependent on location.  In 
that case, the Leibnitz rule has to be used to convert the time/space derivatives of the average to the 
average of these derivatives.
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In the following derivation, an over bar is used to represent an arbitrary averaging operator:

 .f G f
 � (10)

The specific averaging, i.e., time-averaging, space-averaging, or the combination of the two, can be 
determined by the kernel function.  The properties of the averaging operator expressed in Eq.(9) will be 
used in the later derivation. Note that the properties of the averaging operator are similar to the ensemble-
averaging.  Therefore, the following derivation also applies to the ensemble-averaging used by Drew and 
Lahey [5].

2.3 Averaged Generalized Balance Equation
The following averaged quantities are introduced first:

� �
� �

� �
� �

� �

 ,

 ,

ˆ  .

kj kj kj

kj kj
kj

kj kj

kj kj
kj

kjkj

f G f f

G f f
f

G

fG f
f

G

� �

� �
� �

�� �
�� �


 � 


�

 


�

�

 


�

(11)

Here, � �kj
, � �kj

and � �� kj
represent the mean value of a field kj property, the phase-weighted average,

and the mass-weighted- (or Favre-) average, respectively. The derivation of the two-fluid model starts 
from the generalized balance equation of single phase fluids.  For an intensive quantity c of the fluids, the 
generalized balance equation in differential form is given as [11] :

� � � �  .c cv J
t

� � ���
� � 
 �� �

� � � (12)

Here J� and � are surface flux and volume source terms, respectively.  Following a procedure similar to 

Drew and Lahey’s [5], one first multiplies the generalized local instant balance equation, Eq. (12), by the 
field indicator function, kj� , and rearrange to get:

� � � � � � � � 0 .kj kj kj kj kj kj kjc cv J c v J
t t

� � � � � � �� � � � �� �! " ! "� � � � � � �  � � �  
# $ # $� �% & % &
� � � � (13)

Applying the generic averaging operator to Eq. (13), one gets:

� � � � � � � �  .kj kj kj kj kj kj kjc cv J c v J
t t

� � � � � � �� � � � �� �! "� � 
 �� � � �  � � �  # $� �% &
� � � � (14)

The properties of the averaging operators are used in the above derivation.  Based on the definitions given 
in Eq (11), Eq. (14) can be written as:

� � � �� � � � �ˆˆ  .kj kj kj kj kj kj kj kj kj kj kj kj kjkj
c cv J c v J

t t
� � � � � � � � � � � �� �! "� � 
 �� � � �  � � �  # $� �% &

� � � � (15)

In order to take into account the fluctuating component effect caused by turbulence, one can decompose 
the property c as follows:

ˆ  .kj kjc c c'
 � (16)

Then:
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� �� � ��ˆ ˆ  .kj kj kjkj kj
c c c'
 � (17)

Similar to the derivation of the Reynolds-Averaged Navier-Stokes (RANS) equation, one can assume the 
average is idempotent:

� �� ˆˆ ˆ  ,kj kj kjkj
c f c f
 (18)

Based on the above decomposition, Eq. (15) becomes:

� � � � � � � ��

� �

ˆˆ ˆ ˆ

 .

kj kj kj kj kj kj kj kj kj kj kj kj kj kj kj kjkj

kj kj kj

c c v J c v
t

c v J
t

� � � � � � � � � �

� � � �

� ! "' '� � 
 �� � � �# $% &�

�! "� �  � � �  # $�% &

� � �

� �
(19)

The second to the last term in Eq. (19) can be rearranged as a material derivative form: 

� � kj
kj kj

D
c v c

t Dt

�
� � � ��! "�  � 
# $�% &

� . (20)

To properly account for the inter-phase and inter-field mass transfers, D kj
Dt

� is partitioned as follows:

phase field

 ,kj kj kjD D D

Dt Dt Dt

� � �

 � (21)

where,

phase

,   fluid changes phase

0,          otherwise

kj
kj

D
D

Dt
Dt

�� �
	
 �
	


(22)

and

field

,   fluid changes field without phase change

0,          otherwise

kj
kj

D
D

Dt
Dt

�� �
	
 �
	


(23)

In the classical two-fluid model, each phase contains only one field. The following equality holds as long 
as the field on either side of an interface remains constant [12]:

, 0 .kj
i kj kjv

t

�
�

�
�  � 


� � (24)

The above equation is also called the phase topological equation, in which ,i kjv� is the interfacial velocity.

Considering Equations (20) and (24), one can obtain: 

� �, ,ˆ= kj
i kj kj kj i kj

D
c c v v c

Dt

�
� � � (! "
 �  �% &� � (25)

For the multi-field two-fluid model, the phase change term can be expressed as follows:

,

phase
0,..., 1 0,..., 1

ˆ  .

l l

kj kj
kj lm i kj lm

l k l kkj lm
m N m N

D D
c c c

Dt Dt

� �
� � ( � �

� ��

 � 
 �


 
� � (26)
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Here kj lm( � and ,î kj lmc � are the mass transfer rate due to phase change, and the averaged value of c during 

the phase change, at the interface between fields kj and lm.

The term 
field

kjD

Dt

� becomes nontrivial due to field change that occurs within the same phase.  In this case, 

Eq. (24) does not hold.  The field change is a result of the topological change of the two-phase flow 
structures, not an event at a single point.  Therefore, it cannot be modeled by the local instant equation 
alone.  The averaged two-fluid model based on the local instant equation does not have that capability 
either.  One must use a Boltzmann statistical description or a phenomenological approach to model the 
field change rate in a two-phase flow system.  Following a similar path as the two-group IATE [7], field 
changes can be divided into a source and a sink term.  Each is further attributed to various physical 
mechanisms:

0,..., 1 0,..., 1field

 ,
k k

kj kj kj

m N m Nkm kj kj km
m j m j

D D D

Dt Dt Dt

� � �


 � 
 �� �
� �


 �� � (27)

where, the subscript km kj� stands for the change from field km to kj, and vice versa.  Therefore, the first 
and second terms on the RHS of Eq. (27) represent the gain and the loss of field kj, respectively.
Averaging Eq. (27), one obtains:

0,..., 1 0,..., 1field

ˆ ˆ  ,
k k

kj
km kj km kj kj km kj km

m N m N
m j m j

D
c m c m c

Dt

�
� � � � �


 � 
 �
� �


 �� �� � (28)

where, 

 ,kj
km kj

km kj

D
m

DT

�
��

�


� (29)

and

ˆ

kj

km kj
km kj

km kj

D
c

Dt
c

m

�
�

�
�

�



�

. (30)

D kj
Dt

km kj

�

�
is zero everywhere except where the fluid field changes from km to kj.  Therefore, property 

ˆkm kjc � means the averaged value of c during the transfer from field km to kj.  Note the difference between 

the field transfer subscript kj km� , in which the arrow indicates the direction of the field change.  The 
direction of phase change is neither considered in the classical two-fluid model, nor in the two-group two-
fluid model.  One reason is that phase change is usually assumed to be unidirectional at a given point in 
the flow domain at a given time.  However, field transfer could be caused by many different mechanisms 
and each one of them could result in significantly different momentum and energy exchanges.  
Considering annular flow, for example, entrainment and deposition are common transfer mechanisms 
between the film and the droplets.  The governing hydrodynamics are quite different between the 
entrainment and deposition processes.  The entrainment and deposition velocities are also different and 
they must be treated separately in the momentum equation.

Substituting Eqs. (26) and (28) into Eq. (19), the averaged generalized balance equation takes the 
following form:

6910NURETH-16, Chicago, IL, August 30-September 4, 2015 6910NURETH-16, Chicago, IL, August 30-September 4, 2015



� � � � � � � ��

,
0,..., 1 0,..., 1

0,..., 1

ˆˆ ˆ ˆ

ˆ ˆ ˆ

 .

k k
l

kj kj kj kj kj kj kj kj kj kj kj kj kj kj kj kjkj

kj lm i kj lm km kj km kj kj km kj km
l k m N m N
m N m j m j

kj

c c v J c v
t

c m c m c

J

� � � � � � � � � �

(

�

� � � � � �
� 
 � 
 �

 � � �

� ! "' '� � 
 �� � � �# $% &�
� � �

��  

� � �
� � �

� �

�

(31)

2.4 Field Equations in the Multi-field Two-fluid Model 
As no specific assumptions are made, Eq. (31) is applicable to any field of either phase in a two-phase 
flow system. By specifying corresponding c, J, and � for the conservations of mass, momentum and 
energy [11], the following averaged equations for field kj, can be obtained:

Continuity equation

� � � �
0,..., 1 0,..., 1

0,..., 1

ˆ .
k k

l

kj kj kj kj kj kj lm km kj kj km
l k m N m N
m N m j m j

v m m
t

� � � � ( � � �
� 
 � 
 �

 � � �

�
� � 
 � �

� � � �� �� (32)

Momentum equation

� � � � � � � �

� �

,
0,..., 1 0,..., 1

0,..., 1

, ,

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ
k k

l

T
kj kj kj kj kj kj kj kj kj kj kj kj kj kjkj

kj lm i kj lm km kj km kj kj km kj km
l k m N m N
m N m j m j

i kj kj kj i kj

v v v p g
t

v m v m v

p

)

)

� � � � � � � � � �

(

� � �

� � � � � �
� 
 � 
 �

 � � �

� ! "* +� � 
 �� � � � �, -# $� . /% &
� � �

� � � �  

� � �

� � � �

� �� � �

,

0,... 1

 .

l

i kj lm
l k
m N

M �
�

 �

� � �

(33)

Enthalpy energy equation

� � � � � �
,

0,..., 1 0,..., 1
0,..., 1

, ,

0,... 1

ˆ ˆ ˆ

ˆ ˆ ˆ
k k

l

l

T
kj kj kj kj kj kj kj kj kj kj

kj lm i kj lm km kj km kj kj km kj km
l k m N m N
m N m j m j

kji kj lm i kj lm kj kj
l k
m N

h h v q q
t

h m h m h

Dp
a q q

Dt

� � � � �

(

� �

� � � � � �
� 
 � 
 �

 � � �

� �
�

 �

� ! "� � 
 �� �% &�
� � �

* +� � � , -
. /

� � �

�

� � �

� �

�  .kj
kj

� 0

(34)

The interfacial force term in (33) are defined as:

� � � �

� � � �

,

,

,

 ,

 ,

 .

n t
i kj lm kj lm kj lm

n
kj lm i kjkj lm

t
kj lm kj lm i kj

M M M

M p p

M ) )

�

� � �

� � �

� �

� �


 �


 � �

* +
 � �  �, -
. /
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This term will be discussed in detail in section 2.8. Following Ishii and Mishima [1], interfacial jump 
conditions can be given for each interface pair in a multi-field two-fluid model:
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In the above field and jump equations, the interfacial transfer terms kj lm( � , ,i kj lmM �� and , ,i kj lm i kj lma q� � are 

similar to those in the original two-fluid model.  The number of these interfacial terms has increased due 
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to the classification of more fields and interface pairs.  The terms related to km kjm �� and kj kmm �� are not 

found in the original model.  These terms represent the inter-field transfers of mass, momentum and 
energy due to the introduction of the additional fields in each phase.  Here the inter-field transfer rates in 
each direction are explicitly expressed because these bidirectional transfers may involve different 
mechanisms.  Examples are the interexchange between group-1 and group-2 bubbles, and droplet 
entrainment and deposition.  

2.5 Six-field Two-fluid Model
A previous study [10] has shown that very complicated two-phase structures could exist in the churn-
turbulent to annular transitional flow, in which various forms of gases and liquids are observed.  Fig. 1 
shows a typical image taken of a 200 mm x 10 mm rectangular duct.  As the figure shows, the gas phase 
consists of particles of various length scales, from small group-1 bubbles (less than 10 mm) to large 
group-2 bubbles (up to a few centimeters), up to a continuous gas core.  The same wide range of length 
scales can also be found in the liquid phase.  It is shown that both small (below 1 mm) and large (a few 
millimeters) droplets exist in the gas core.  More interestingly, a large liquid bridge (up to 5 cm in length) 
containing small group-1 bubbles is also seen in the same snapshot.  Indeed, this flow condition
encompasses a variety of gas and liquid interfacial structures, of which the length scales range from the 
smallest one that is of practical interest (e.g., a sub-micron droplet), all the way up to a continuous phase 
scale on the order of the test duct. 

g1

10mm
g2

f1

f2

g0

f0

Fig. 1 Typical two-phase structures in the churn-turbulent to annular transitional flow.

The more fields accounted for in either the gas or liquid phase means a potentially more accurate 
description of the phenomena can be obtained.  However, several issues arise if we divide each phase into 
fine groups.  First, computational cost grows with additional fields.  The associated numerical issues such 
as convergence become more problematic.  Second, sophisticated instrumentation is not available at the 
moment to allow detailed measurement of such a transition to annular flow.  Third, more fluid fields 
require more closures for interfacial terms, inter-field terms, and turbulence terms.  Without the support of 
experimental data, it is almost impossible to develop accurate and physical closures for such complicated 
phenomena. In relation to this, a six-field two-fluid model is proposed as a generic framework for churn-
turbulent to annular transitional flows and can be applied to all other two-phase flow regimes.  In this 
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model, the gases are classified into three fields: small bubbles (g1, or DV1), large bubbles (g2, or DV2)
and continuous gas (g0, or CV).  The liquids are classified into three similar fields: small droplets (f1, or 
DL1), large droplets (f2, or DL2) and continuous liquid (f0, or CL) as shown in Fig. 2.

� �0CV g

� �0CL f

� �1 1DL f

� �2 2DV f� �1 1DV g

� �2 2DV g

Continuous Liquid

Continuous Gas

Large Droplet

Small DropletLarge Bubble

Small Bubble

Interfacial Transfer

Inter-field Transfer

Fig. 2 Fluid fields and interfacial area groups in the six-field two-fluid model.

The first two gas fields (g1/DV1, g2/DV2) have the same definitions as those in the two group approach 
developed for cap-turbulent and churn-turbulent flows[8].  The continuous gas (CV) only exists beyond 
the transition to annular flow.  The dispersed liquids are classified into two fields: group-1 droplets (DV1)
and group-2 droplets (DV2) compared to only one field in the four-field two-fluid model [6].  This 
classification is based on the consideration of the following differences between small and large droplets.  
First, their significance in the total void fraction and interfacial area concentration are different because 
the surface area of a large droplet is much less than that of smaller droplets of equivalent volume.  Second, 
the terminal velocity of large and small droplets can vary over an order of magnitude, which results in 
very different drag coefficients.  Similar to that on bubbles, the lift force on droplets also changes its 
direction when the droplet Reynolds number exceeds a certain limit, according to the study by Sugioka 
and Komori [13].  In terms of droplet entrainment and deposition, large and small droplets show different 
characteristics.  Due to their small inertia, small droplets tend to follow the gas turbulence more closely 
and present a turbulent diffusion like deposition mechanism.  Large droplets can directly deposit on the 
wall or liquid film due to high initial momentum imparted to them at the time of their generation [14].  In
the transition to annular flow, there are many “semi-dispersed” liquids such as bridges shown in Fig. 1, 
ligaments typically found in annular flow, and possibly other complicated liquid forms existing in wispy 
annular flow.  These semi-dispersed liquids behave neither like a film, nor small droplets.  Therefore, it is 
more reasonable to have a separate dispersed liquid field to describe large droplets and semi-dispersed 
liquids.  This classification also allows for an accurate modeling of the liquid slugs that could appear in a 
post-Critical Heat Flux (CHF) regime.

With the above classification of the flow fields, a total of nine interfacial area groups can be identified;
for example, interfacial area between group-1 bubbles and continuous liquid (DV1-CL), ai, f0-g1, that 
between group-2 bubbles and continuous liquid (DV2-CL), ai, f0-g2, and so on.  Theoretically, each red line 
in Fig. 2 indicates a potential interfacial area group.  Depending on the flow condition, certain interfacial 
area concentration groups and/or interfacial transfer terms may be negligible.  For example, the small 
bubbles in the large droplets (DV1-DL2) may not be important in annular flow.  However, such omission 
will not be made in this work until sufficient experimental justification becomes available.

2.6 Types of Constitutive Relations
In general, three types of inter- and intra-phase transfer terms are identified in the six-field two-fluid 
model based on the involved phases and fields: interfacial transfer terms, inter-field transfer terms, and 
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turbulence terms.  Table 1 summarizes the required closures for these terms in a matrix, where the term in 
element (i, j) represents the interactions between the field of the ith row and the field of the jth column.  
The upper right triangle is left blank as this matrix is symmetric.  The terms in the red dashed box consists 
of the major interfacial transfer closures.  Interfacial mass, momentum, and energy transfers (also see the 
solid red line in Fig. 2) take place at the interface between a gas and a liquid field.  Therefore, these terms 
have a strong dependence on the interfacial area concentration.  Similar to the two-group IATE, the 
interfacial area transport equation and various source and sink models must be developed for the 
dispersed liquid fields and the continuous interface.  The generalized drag term is probably the most 
important interfacial transfer term and will be discussed in a later section. 

The terms in the green and blue dashed boxes are the intra-phase transfer terms within the gas and liquid 
phase, respectively.  The intra-phase transfer terms can be further divided into two types: turbulence 
terms which are the result of fluctuations within each field (the diagonal elements in Table 1), and the 
inter-field transfer terms which stand for the interexchange among different fields of the same phase (also 
see the dashed blue lines in Fig. 2).

It has been assumed that two fields of the same phase do not contact directly.  This assumption leads to 
zero contact area between two fields of the same phase, and precludes any inter-field exchanges other 
than via a direct mass transfer.  Therefore, the most important inter-field closures are the inter-field mass 
transfer rates, which must be modeled by considering various source and sink mechanisms such as those 
developed for group-1 and group-2 bubbles for gas-dispersed flows [7]. In an annular flow, the mass 
transfer between the liquid film and droplets is usually characterized by entrainment and deposition rates.  
These are particularly important in terms of predicting the film dryout and peak cladding temperature in 
reactor safety analysis.  The entrainment and deposition rate correlations should be treated under the 
bigger umbrella of the interfacial area transport modeling as they are just two of the many droplet-droplet
and droplet-film interaction mechanisms.  

Table 1 Inter- and intra-phase transfer terms in the six-field two-fluid model.

g0/cv g1/dv1 g2/dv2 f0/cl f1/dl1 f2/dv2

g0/cv

g1/dv1

g2/dv2

f0/cl

f1/dl1

f2/dv2

Intra-phase Transfer (gas)

Interphase Transfer Intra-phase Transfer (liquid)

2.7 The Generalized Drag Force
The two-fluid model is based on the Eulerian formulation of the local instant mass, momentum, and 
energy conservation equations.  The interfacial momentum transfer terms in the two-fluid model are often 
related to drag, lift and other forces acting on fluid particles. These particle forces depict the integral 
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effect of the pressure and shear stress over a particle surface imparted by the surrounding fluid.  They 
appear in the equation of motion for particles in a moving fluid, and hence are based on the Lagrangian 
frame of reference. The interfacial momentum transfer terms in the Eulerian two-fluid model should be 
compatible with the particle force terms arising in the equation of motion.  However, the relation between 
these two approaches has not been adequately addressed in the past, which led to various forms of 
momentum interfacial transfer terms. In this section, a brief discussion will be presented on this topic.

The equation of motion for a small rigid sphere in a non-uniform flow has been rigorously derived by
Maxey and Riley [15].  In this approach, the flow field is divided into two simpler ones: the undisturbed 
single-phase flow ( � �0v� ), and the disturbance flow created by the rigid sphere moving in a stagnant liquid 

( � �1v� ), more generally speaking, in a uniform flow field.  For particle Reynolds numbers much less than 1, 
they show that the solution is a linear superposition of the two flow fields.  The equation of motion for the 
sphere is shown to be [15]:

� � � �� �0 01
,p

p p p
b

dv
g F p I

dt V
� � �
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�� (37)

where, pF� � contains all the normal particle forces such as drag, Basset, virtual mass and lift forces, etc.

The last term in Eq. (37) represents a force due to the pressure and shear stress distribution in the 
undisturbed non-uniform flow field.  

The connection between the Eulerian two-fluid model and the equation of motion of a single particle can 
be established by introducing the probability density function (pdf) of the dispersed particles and a 
statistical averaging [16]. The evolution equation of the pdf is given by:
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Here � �, , pf x t v� � is defined such that � �, , pf x t v x v� �� � � � is the probable number of particles located in the 

volume 1 2,x x x��� � � with a velocity in ,p p pv v v�! "�% &� � � at time t.  One can weight Eq. (38) with the particle 

velocity and take the integral over the entire particle velocity range.  Substituting the equation of motion 
of a single particle, i.e., Eq. (37), into Eq. (38), one can obtain the momentum equation for the dispersed 
phase based on a statistical averaging [16]. The equation is similar to the momentum equation obtained 
from an Eulerian approach, i.e., Eq. (33) except that it contains the particle force terms pF� � instead of 

the averaged surface stress terms. The interfacial force terms originated from these two different 
approaches should be consistent. By comparison, one has:
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Here, the angle bracket “< >” represents the statistical averaging.  

In the two-fluid model, the pressures of the dispersed phase, the continuous phase and at the interface are 
assumed to be the same.  The pressure related term in the two-fluid model can be simplified as 

� � ,kj kj i kj kj kj kjp p p� � ��� � � 
 � � .  This assumption seems to be reasonable based on Eq. (39) as it yields 

similar pressure term as the statistical averaging approach.  This also confirms that the averaged 
interfacial pressure should be separated from the generalized drag term as proposed by Ishii [3].
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Considering a single bubble or droplet, the pressure of the dispersed phase is normally higher than that of 
the continuous phase due to surface tension effects.  However, Eq. (39) shows that the continuous phase 
pressure should be used even in the dispersed phase momentum equation according to the statistical-
averaging equation.  This may be explained by the fact that the pressure gradients of the continuous and 
the dispersed phases should be similar, even though the absolute pressure may be different. 

By assuming the same shear stress at the interface and in the bulk, it is clear that the effect of the mean 
shear stress should be separated from the generalized drag as: � � � �, ,kj kj kji kj i kj

� � � � � � �* +��  
��  � ��  , -
. /

.  The generalized drag 

given by Ishii et al. [1, 17], � � � �, , ,
M p pi kj kj i kj kj i kj
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* +
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� is consistent with that based on the statistical 

averaging approach and the equation of motion of a single particle.  

The equation of motion derived by Maxey and Riley only concerns a small rigid sphere in a very large 
flow field with particle Reynolds number much less than unity.  For a multiple fluid particle system at 
finite particle Reynolds number, Maxey and Riley equation cannot be applied due to the strong nonlinear 
interactions between particles and the continuous fluid, and among particles themselves.  In this case, an 
analytical solution may not exist.  However, the general concept of decomposing the complex flow field 
into a single-phase undisturbed flow field and a field with multiple particles moving in stagnant liquid, 
can still be adopted for the interfacial momentum closure.  In fact, the drag models for a single fluid 
particle are all developed based on the terminal velocities of droplets or bubbles in an infinite medium.  
The drag coefficients for multi-particle systems are based on the data mainly from sedimentation or 
fluidization processes [18].  In either case, the continuous fluid is maintained at rest.  In this regard, the 
above decomposition is consistent with the existing drag models.  

3. CONCLUSIONS 

In summary, a generic multi-field two-fluid model framework has been developed based on the local 
instant conservation equations of single-phase fluids.  The framework is applicable to all the possible flow 
regimes with any number of fields, which is a significant improvement over the four-field or two-group 
two-fluid models found in the literature.  The averaged conservation equations and two-phase flow 
parameters are rigorously derived with minimal assumptions.  A six-field two-fluid model is proposed to 
model the vertical two-phase flows of practical interest. The proposed six-field two-fluid model extends 
the two-group bubble approach to the entire spectrum of the two-phase flow regimes spanning from 
bubbly to annular.  A total of six fields have been identified in this model including two dispersed gas 
fields, two dispersed liquid fields, one continuous gas field and one continuous liquid field.  The two 
dispersed gas fields coincide with the two groups of bubbles identified in the previous IATE studies.  The 
continuous gas and two dispersed liquid fields mainly exist in the churn-annular transitional, misty and 
wispy annular, and certain horizontal flows.  The six-field two-fluid model, once implemented into a CFD 
code, is expected to yield sufficient details of the transport characteristics of various gases and liquids in 
two-phase flows. The relation between the momentum transfer terms in the Eulerian two-fluid model and 
the particle forces has been established by introducing a statistical averaging and the equation of motion 
of a single particle.  It has been shown that Ishii and Mishima’s formulation [1] of interfacial momentum 
transfer terms is consistent with the statistical averaging approach and should be adopted in the six-field 
two-fluid model.  
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